خيارات البحث
النتائج 1 - 10 من 58
Determination of dry deposition velocity of polycyclic aromatic hydrocarbons under the sub-tropical climate and its implication for regional cycling
2020
Dotel, Jagdish | Gong, Ping | Wang, Xiaoping | Pokhrel, Balram | Wang, Chuanfei | Nawab, Javed
Atmospheric dry deposition is a major pathway for removal of polycyclic aromatic hydrocarbons (PAHs) from the atmosphere. Despite its significance in the atmospheric environment, measurements of the dry deposition velocity (VDD) and deposition fluxes (FDD) of PAHs are relatively limited. In this study, a passive dry deposition (PAS-DD) collector was co-deployed with passive air sampler polyurethane foam (PAS-PUF) from November 2015 to November 2016 in two major cities (Kathmandu and Pokhara), Nepal, to investigate the VDD and FDD of PAHs. The VDD of PAHs ranged from 0.25 to 0.5 cm s⁻¹ and the annual average was recorded as 0.37 ± 0.08 cm s⁻¹. On the basis of measured VDD, the FDD of ∑15PAHs in Kathmandu and Pokhara were estimated as 66 and 5 kg yr⁻¹ respectively. According to the measured VDD of Kathmandu and Pokhara in this study, and the previously published VDD data of Toronto, Canada, where the same PAS-DD collector was used, a significant multi-linear correlation (r² = 0.79, p < 0.05) was found between VDD of higher molecular weight (HMW with MW ≥ 228.3 and ≥ 4 rings) PAHs and meteorological parameters (precipitation and wind speed) and vapor pressure of PAHs. To the best of our knowledge, this enabled the development of an empirical model that can exhibit the combined effects of meteorological conditions on the VDD of HMW PAHs. The model was used to estimate the VDD values for major cities in the Indo-Gangetic Plain (IGP) region and the maximum estimated proportion of HMW PAHs deposited by dry deposition reached up to 60% of total emissions. Although PAH emissions in the IGP region pose global risks, the results of this study highlight the considerable risk for local IGP residents, due to the large dry deposition proportion of HMW PAHs.
اظهر المزيد [+] اقل [-]Occurrence and fate of organophosphate ester flame retardants and plasticizers in indoor air and dust of Nepal: Implication for human exposure
2017
Yadav, Ishwar Chandra | Devi, Ningombam Linthoingambi | Zhong, Guangcai | Li, Jun | Zhang, Gan | Covaci, Adrian
The present study was carried out in Nepal, a landlocked country located between world's two most populous countries i.e. India and China. In this study, the occurrence, profiles, spatial distributions and fate of eight organophosphate ester flame retardants (OPFRs) were investigated in indoor air and house dust. Overall, the concentrations of ∑OPFR were in the range of 153–12100 ng/g (median732 ng/g) and 0.32–64 ng/m3 (median 5.2 ng/m3) in house dust and indoor air, respectively. The sources of high OPFR in the indoor environment could be from locally used wide variety of consumer products and building materials in Nepalese houses. Significantly, high concentration of tri-cresyl phosphate (TMPP) was found both in air and dust, while tri (2-ethylhexyl) phosphate (TEHP) had the highest concentration in air samples. It might be due to fact that the high concentrations of TMPP are related to intense traffic and/or nearby airports. On the other hand, significantly high concentration of TEHP could be due to anthropogenic activities. Only TEHP showed positive correlation between indoor air and house dust (Rho = 0.517, p < 0.01), while rest of compounds were either less correlated or not correlated at all. The estimated human exposure to ∑OPFR via different pathway of intake suggested dermal absorption via indoor dust as major pathway of human exposure to both children and adult population. However, other pathways of OPFR intake such as dietary or dermal absorption via soil may still be significant in case of Nepal.
اظهر المزيد [+] اقل [-]Impact of climate fluctuations on deposition of DDT and hexachlorocyclohexane in mountain glaciers: Evidence from ice core records
2010
Wang, Xiaoping | Gong, Ping | Zhang, Qianggong | Yao, Tandong
How do climate fluctuations affect DDT and hexachlorocyclohexane (HCH) distribution in the global scale? In this study, the interactions between climate variations and depositions of DDT and HCH in ice cores from Mt. Everest (the Tibetan Plateau), Mt. Muztagata (the eastern Pamirs) and the Rocky Mountains were investigated. All data regarding DDT/HCH deposition were obtained from the published results. Concentrations of DDT and HCH in an ice core from Mt. Everest were associated with the El Nino-Southern Oscillation. Concentrations of DDT in an ice core from Mt. Muztagata were significantly correlated with the Siberia High pattern. Concentrations of HCH in an ice core from Snow Dome of the Rocky Mountains responded to the North Atlantic Oscillation. These associations suggested that there are some linkages between climate variations and the global distribution of persistent organic pollutants. Our study approves the potential contribution of ice core records of POPs to transport mechanisms of POPs.
اظهر المزيد [+] اقل [-]Microplastics in the Koshi River, a remote alpine river crossing the Himalayas from China to Nepal
2021
Yang, Ling | Luo, Wei | Zhao, Pin | Zhang, Yulan | Kang, Shichang | Giesy, John P. | Zhang, Fan
Studies of microplastics (MPs) in remote, trans-boundary and alpine rivers are currently lacking. To understand the sinks and transport mechanisms of MPs, this study investigated the distributions and sources of MPs in the surface waters and sediments of five tributaries of the Koshi River (KR), a typical alpine river in the Himalayas between China and Nepal. Mean abundances of MPs in water and sediment were 202 ± 100 items/m³ and 58 ± 27 items/kg, dry weight, respectively. The upstream tributary, Pum Qu in China, had the smallest abundance of MPs, while the middle tributary, Sun Koshi in Nepal, had the greatest abundance. Compared to international values in rivers, contamination of the KR with MPs was low to moderate. Fibers represented 98% of all MP particles observed, which consisted of polyethylene, polyethyleneterephthalate, polyamide, polypropylene, and polystyrene. Blue and black MPs were prevalent, and small MPs (<1 mm) accounted for approximately 60% of all MPs. Atmospheric transmission and deposition were considered to be the principal sources of MPs in the upstream tributary. The results imply that point sources associated with mostly untreated sewage effluents and solid wastes from households, major settlements, towns, and cities were most important sources of MPs in the KR. Non-point sources from agricultural runoff and atmospheric transport and deposition in the middle stream tributaries also contribute a part of microplastics, while the least amount was from fishing in the downstream tributary. Urbanization, agriculture, traffic, and tourism contributed to pollution in the KR by MPs. Equations to predict abundances of MPs based on river altitudes revealed that different trends were affected by both natural and human factors within the KR basin. This study presents new insights into the magnitude of MP pollution of a remote alpine river and provides valuable data for developing MP monitoring and mitigation strategies in similar environments worldwide.
اظهر المزيد [+] اقل [-]Source identification of atmospheric particle-bound mercury in the Himalayan foothills through non-isotopic and isotope analyses
2021
Guo, Junming | Sharma, Chhatra Mani | Tripathee, Lekhendra | Kang, Shichang | Fu, Xuewu | Huang, Jie | Shrestha, Kundan Lal | Chen, Pengfei
This study reports on the sources of atmospheric particle-bound mercury (HgP) in less studied regions of Nepal based on the analysis of stable mercury (Hg) isotopes in aerosol samples from two neighboring areas with high and low anthropogenic emissions (Kathmandu and Dhulikhel, respectively) during 2018. Although the Indian monsoon and westerlies are generally regarded as the primary carriers of pollutants to this region via the heavily industrialized Indo-Gangetic Plain, the concentrations of total suspended particles (TSP) and HgP in Kathmandu were higher than those in Dhulikhel, thus suggesting a substantial contribution from local sources. Both isotopic (δ²⁰⁰Hg and Δ¹⁹⁹Hg) and non-isotopic evidence indicated that dust, waste burning, and industrial byproducts (without Hg amalgamation) were the major sources of Hg in Kathmandu during the study period. Mercury may have been transported via air masses from Kathmandu to Dhulikhel, as indicated by the similar organic carbon/elemental carbon ratios and seasonal trends of TSP and HgP in these two locations. Local anthropogenic sources were found to contribute significantly to atmospheric Hg pollution through dust resuspension. Therefore, dust resuspension should be considered when evaluating the long-range transport of air pollutants such as Hg, particularly in anthropogenically stressed areas.
اظهر المزيد [+] اقل [-]Inter-annual and seasonal variations in columnar aerosol characteristics and radiative effects over the Pokhara Valley in the Himalayan foothills – Composition, radiative forcing, and atmospheric heating
2020
Ramachandran, S. | Rupakheti, M.
This study reports comprehensive analysis of seasonal and inter-annual variations of aerosol properties (optical, physical and chemical) and radiative effects over Pokhara Valley in the foothills of central Himalayas in Nepal utilizing the high-quality multi-year columnar aerosol data observed recently from January 2010 to December 2017. This paper focusses on the seasonal and inter-annual variations of chemical (composition), and absorption properties of aerosols and their radiative effects. The single scattering albedo (SSA) either decreases as a function of wavelength or remains independent of wavelength. The seasonal mean aerosol absorption optical depth (AAOD) exhibits a behavior opposite to that of SSA. Carbonaceous aerosols (CA) dominate (≥60%) aerosol absorption during the whole year. Black carbon (BC) alone contributes >60% to AAODCA while brown carbon (BrC) shares the rest. The absorbing aerosol types are determined to be BC, and mixed (BC and dust) only. Dust as absorbing aerosol type is absent over the Himalayan foothills. The ARFSFC is ≥ -50 Wm⁻² except in monsoon almost every year. The ARFATM is ≥ 50 Wm⁻² during winter and pre-monsoon in all the years. ARFESFC, ARFETOA and ARFEATM follow a similar pattern as that of ARF. High values of ARFE at SFC, TOA and ATM (except during monsoon when values are slightly lower) suggest that aerosols are efficient in significantly modulating the incoming solar flux throughout the year. The annual average aerosol-induced atmospheric heating rate (HR) over Pokhara is nearly 1 K day⁻¹ every year during 8-year observation, and is highest in 2015 (∼2.5 K day⁻¹). The HR is about 1 K day⁻¹ or more over all the locations in IGP during the year. These quantitative results can be used as inputs in global/regional climate models to assess the climate impact of aerosols, including on regional temperature, hydrological cycle and melting of glaciers and snowfields in the region.
اظهر المزيد [+] اقل [-]Occurrence and characteristics of microplastics in surface road dust in Kusatsu (Japan), Da Nang (Vietnam), and Kathmandu (Nepal)
2020
Yukioka, Satoru | Tanaka, Shuhei | Nabetani, Yoshiki | Suzuki, Yuji | Ushijima, Taishi | Fujii, Shigeo | Takada, Hideshige | Van Tran, Quang | Singh, Sangeeta
Microplastics (MPs, plastics < 5 mm) are a growing concern in ecosystems, being found in the soil and water environment. One of the primary sources of MPs has been suspected to be road dust in urban areas as it can flow into waters with runoff. To understand the occurrence of MPs (100 μm–5 mm) in surface road dust of three cities (Kusatsu, Shiga, Japan; Da Nang, Vietnam; and Kathmandu, Nepal), we collected surface road dust samples. The samples were pretreated (organic matter decomposition and gravity separation), and all MP candidates were individually observed by microscope for color, shape, and size; and analyzed their polymer types using fourier transform infrared spectrometry. The abundances of MPs 100 μm to 5 mm in size were 2.0 ± 1.6 pieces/m2 (13 polymer types) in Kusatsu, 19.7 ± 13.7 pieces/m2 in Da Nang (14 types), and 12.5 ± 10.1 pieces/m2 in Kathmandu (15 types). We classified the MPs into two groups; containers/packaging-MPs and rubber-MPs. Among all MPs, the containers/packaging-MPs accounted for 55 ± 5% of the polymer types composition. In contrast, the rubber-MPs accounted for 16 ± 6% of all MPs which were higher than those previously published for environmental water and sediment samples. The containers/packaging-MPs were fragments of various colors while most of the rubber-MPs were fragments or granules in black. The number–size distributions of MPs showed that the mode of formation explains the differences between their polymer types (tearing for containers/packaging-MPs and abrasion for rubber-MPs). In Da Nang and Kathmandu, the abundance of containers/packaging-MPs and rubber-MPs were correlated so that those MPs might be micronized from the originated materials in the sources with the similar composition (e.g. dump points). It was indicated that the characteristics of MPs pollution in surface road dust might be different depending on waste management practices.
اظهر المزيد [+] اقل [-]Light absorption properties of elemental carbon (EC) and water-soluble brown carbon (WS–BrC) in the Kathmandu Valley, Nepal: A 5-year study
2020
Chen, Pengfei | Kang, Shichang | Tripathee, Lekhendra | Ram, Kirpa | Rupakheti, Maheswar | Panday, Arnico K. | Zhang, Qianggong | Guo, Junming | Wang, Xiaoxiang | Pu, Tao | Li, Yizhong
This study presents a comprehensive analysis of organic carbon (OC), elemental carbon (EC), and particularly the light absorption characteristics of EC and water-soluble brown carbon (WS–BrC) in total suspended particles in the Kathmandu Valley from April 2013 to January 2018. The mean OC, EC, and water-soluble organic carbon (WSOC) concentrations were 34.8 ± 27.1, 9.9 ± 5.8, and 17.4 ± 12.5 μg m⁻³, respectively. A clear seasonal variation was observed for all carbonaceous components with higher concentrations occurring during colder months and lower concentrations in the monsoon season. The relatively low OC/EC ratio (3.6 ± 2.0) indicates fossil fuel combustion as the primary source of carbonaceous components. The optical attenuation (ATN) at 632 nm was significantly connected with EC loading (ECS) below 15 μg cm⁻² but ceased as ECS increased, reflecting the increased influence of the shadowing effect. The derived average mass absorption cross-section of EC (MACEC) (7.0 ± 4.2 m² g⁻¹) is comparable to that of freshly emitted EC particles, further attesting that EC was mainly produced from local sources with minimal atmospheric aging processes. Relatively intensive coating with organic aerosols and/or salts (e.g., sulfate, nitrate) was probably the reason for the slightly higher MACEC during the monsoon season, whereas increased biomass burning was a major factor leading to lower MACEC in other seasons. The average MACWS₋BᵣC at 365 nm was 1.4 ± 0.3 m² g⁻¹ with minimal seasonal variations. In contrast to MACEC, biomass burning was the main reason for a higher MACWS₋BᵣC in the non-monsoon season. The relative light absorption contribution of WS-BrC to EC was 9.9% over the 300–700 nm wavelength range, with a slightly higher ratio (13.6%) in the pre-monsoon season. Therefore, both EC and WS-BrC should be considered in the study of optical properties and radiative forcing of carbonaceous aerosols in this region.
اظهر المزيد [+] اقل [-]Improved method to apportion optical absorption by black and brown carbon under the influence of haze and fog at Lumbini, Nepal, on the Indo-Gangetic Plains
2020
Izhar, Saifi | Gupta, Tarun | Panday, Arnico K.
Estimates of the brown carbon (BrC) absorption and their contribution to light absorption in ambient aerosols are poorly understood. The existing approaches to apportion light absorption into black carbon (BC) and BrC mainly use the assumption of fixed angstrom absorption exponent (AAE) for BC (1.0), which is not always true for ambient aerosols. Besides, these estimates are seldom validated, leaving significant uncertainty with derived values. Also, BrC absorption studies are largely focused on aqueous extracts, which truly do not represent the aerosolized form, hence the relationship between aqueous extracts and aerosolized form is a subject of research. With this in mind, we collected ambient PM₂.₅ filter samples at Lumbini, Nepal, at the northern edge of the Indo-Gangetic Plains (IGP) during winter 2017-18. These samples were analyzed for different compositions of carbonaceous aerosol and optical properties. BC and BrC absorptions were derived using a preexisting simplified two-component model but with “improved conditions”. Although BC dominated spectral absorption, BrC contribution for the carbonaceous aerosol absorption increased substantially at ultraviolet wavelengths (example 14.8–53.6% at 365 nm). Further water-soluble BrC absorption value in aerosol was found to be higher by 1.8 times to that obtained in aqueous extracts. Water-soluble OC contributed ∼65% to OC loading and 50% to BrC absorption at 365 nm, indicated the equally important role of water-insoluble organics. Mass absorption efficiency (MAE) of water-soluble BrC in aerosol was found to be 1.7 m²/g, lower to water-insoluble by 2.2 times. High BC MAE was observed which showed positive dependence on secondary coating. Sample collected during events with fog droplets showed a reduction in carbonaceous components loading and light absorption but enhancement in MAE for BrC and BC, signifying that aqueous processing can significantly modify the aerosol optical properties.
اظهر المزيد [+] اقل [-]Possible emissions of POPs in plain and hilly areas of Nepal: Implications for source apportionment and health risk assessment
2017
Ambient air is a core media chosen for monitoring under the Stockholm Convention on POPs. While extensive monitoring of POPs in ambient air has been carried out in some parts of the globe, there are still regions with very limited information available, such as some developing countries as Nepal. This study therefore aims to target the occurrence of selected POPs in Nepal in suspected source areas/more densely populated regions. Four potential source regions in Nepal were furthermore targeted as it was hypothesized that urban areas at lower altitudes (Birgunj and Biratnagar located at approximately 86 and 80 m.a.s.l.) would be potentially more affected by OCPs because of more intensive agricultural activities in comparison to urban areas at higher altitudes (Kathmandu, Pokhara located 1400 and 1135 m.a.s.l). As some of these areas could also be impacted by LRAT, air mass back trajectories during the sampling period were additionally evaluated using HYSPLIT. The concentrations of overall POPs were twice as high in plain areas in comparison to hilly areas. DDTs and HCHs were most frequently detected in the air samples. The high p,p′-DDT/(pp′-DDE + pp′-DDD) ratio as well as the low o,p′-DDT/p,p′-DDT ratio observed in this study was inferred as continuing use of technical DDT. High levels of ∑26PCBs were linked to proximity to highly urbanized and industrial areas, indicating the potential source of PCBs. The measured concentrations of legacy POPs in air from this study is assumed to represent a negligible health risk through inhalation of ambient air, however, other modes of human exposure could still be relevant in Nepal. The air mass backward trajectory analysis revealed that most of the air masses sampled originated from India and the Bay of Bengal.
اظهر المزيد [+] اقل [-]