خيارات البحث
النتائج 1 - 10 من 287
Comparative study of the sensitivity of two freshwater gastropods, Lymnaea stagnalis and Planorbarius corneus, to silver nanoparticles: bioaccumulation and toxicity
2022
Wang, Ting | Marle, Pierre | Slaveykova, Vera I. | Schirmer, Kristin | Liu, Wei
Metal-based nanoparticles (NPs) are considered detrimental to aquatic organisms due to their potential accumulation. However, little is known about the mechanisms underlying these effects and their species-specificity. Here we used stable silver (Ag) NPs (20 nm, from 10 to 500 μg/L) with a low dissolution rate (≤2.4%) to study the bioaccumulation and biological impacts in two freshwater gastropods: Lymnaea stagnalis and Planorbarius corneus. No mortality was detected during the experiments. Ag bioaccumulation showed a dose-related increase with an enhanced concentration in both species after 7d exposure. L. stagnalis displayed a higher accumulation for AgNPs than P. corneus (e.g., up to 18- and 15-fold in hepatopancreas and hemolymph, respectively) which could be due to the more active L. stagnalis having greater contact with suspended AgNPs. Furthermore, the hepatopancreas and stomach were preferred organs for bioaccumulation compared to the kidney, mantle and foot. Regarding biological responses, the hemolymph rather than hepatopancreas appeared more susceptible to oxidative stress elicited by AgNPs, as shown by significantly increasing lipid peroxidation (i.e., formation of malondialdehyde). Neurotoxicity was detected in L. stagnalis when exposed to high concentrations (500 μg/L). Comparison with impacts elicited by dissolved Ag revealed that the effects observed on AgNPs exposure were mainly attributable to NPs. These results highlighted the relationship between the physiological traits, bioaccumulation, and toxicity responses of these two species to AgNPs and demonstrated the necessity of species-specificity considerations when assessing the toxicity of NPs.
اظهر المزيد [+] اقل [-]Unravelling biogeochemical drivers of methylmercury production in an Arctic fen soil and a bog soil
2022
Zhang, Lijie | Philben, Michael | Taş, Neslihan | Johs, Alexander | Yang, Ziming | Wullschleger, Stan D. | Graham, David E. | Pierce, Eric M. | Gu, Baohua
Arctic tundra soils store a globally significant amount of mercury (Hg), which could be transformed to the neurotoxic methylmercury (MeHg) upon warming and thus poses serious threats to the Arctic ecosystem. However, our knowledge of the biogeochemical drivers of MeHg production is limited in these soils. Using substrate addition (acetate and sulfate) and selective microbial inhibition approaches, we investigated the geochemical drivers and dominant microbial methylators in 60-day microcosm incubations with two tundra soils: a circumneutral fen soil and an acidic bog soil, collected near Nome, Alaska, United States. Results showed that increasing acetate concentration had negligible influences on MeHg production in both soils. However, inhibition of sulfate-reducing bacteria (SRB) completely stalled MeHg production in the fen soil in the first 15 days, whereas addition of sulfate in the low-sulfate bog soil increased MeHg production by 5-fold, suggesting prominent roles of SRB in Hg(II) methylation. Without the addition of sulfate in the bog soil or when sulfate was depleted in the fen soil (after 15 days), both SRB and methanogens contributed to MeHg production. Analysis of microbial community composition confirmed the presence of several phyla known to harbor microorganisms associated with Hg(II) methylation in the soils. The observations suggest that SRB and methanogens were mainly responsible for Hg(II) methylation in these tundra soils, although their relative contributions depended on the availability of sulfate and possibly syntrophic metabolisms between SRB and methanogens.
اظهر المزيد [+] اقل [-]Distribution and source of and health risks associated with polybrominated diphenyl ethers in dust generated by public transportation
2022
Jin, Mantong | Zhang, Shunfei | Ye, Nanxi | Zhou, Shanshan | Xu, Ziyu
Carcinogenic and neurotoxic polybrominated diphenyl ethers (PBDEs) are environmentally ubiquitous and have been widely investigated. However, little is understood regarding their pollution status, sources, and potential risk to persons in public transportation microenvironments (PTMs). We collected 60 dust samples from PTMs and then selected four materials typical of bus interiors to determine the sources of PBDEs in dust using principal component analysis coupled with Mantel tests. We then evaluated the risk of PBDEs to public health using Monte Carlo simulations. We found that PBDE concentrations in dust were 2-fold higher in buses than at bus stops and that brominated diphenyl ether (BDE)-209 was the main pollutant. The number of buses that passed through a bust stop contributed to the extent of PBDE pollution, and the primary potential sources of PBDEs in dust were plastic handles and curtains inside buses; BDE-209 and BDE-154 were the main contributors of pollution. We found that health risk was 8-fold higher in toddlers than in adults and that the reference doses of PBDEs in dust were far below the United States Environmental Protection Agency limits. Our findings provide a scientific basis that may aid in preventing PBDE pollution and guiding related pollution management strategies in PTMs.
اظهر المزيد [+] اقل [-]Disturbance of glutamate metabolism and inhibition of CaM-CaMKII-CREB signaling pathway in the hippocampus of mice induced by 1,2-dichloroethane exposure
2022
Huang, Weiyu | Wang, Zijiang | Wang, Gaoyang | Li, Kunyang | Jin, Yaping | Zhao, Fenghong
1,2-Dichloroethane (1,2-DCE) is a highly toxic neurotoxicity, and the brain tissue is the main target organ. At present, long-term exposure to 1,2-DCE has been shown to cause cognitive dysfunction in some studies, but the mechanism is not clear. The results of this study showed that long-term 1,2-DCE exposure decreased learning and memory abilities in mice and impaired the structure and morphology of neurons in the hippocampal region. Moreover, except for the mRNA level of PAG, the enzymatic activities and protein levels of GS and PAG, as well as the mRNA level of GS were inhibited. With increasing dose of exposure, the protein and mRNA expression of GLAST and GLT-1 also decreased. Contrarily, there were protein and mRNA expression upregulation of GluN1, GluN2A and GluN2B in the hippocampus, as well as increased levels of extracellular Glu and intracellular Ca²⁺. In addition, 1,2-DCE exposure also downregulated the protein expression levels of CaM, CaMKII and CREB. Taken together, our results suggest that long-term 1,2-DCE exposure impairs the learning and memory capacity in mice, which may be attributed to the disruption of Glu metabolism and the inhibition of CaM- CaMKII-CREB signaling pathway in the hippocampus.
اظهر المزيد [+] اقل [-]Polybrominated diphenyl ethers exert genotoxic effects in pantropic spotted dolphin fibroblast cell lines
2021
Rajput, Imran Rashid | Yaqoob, Summra | Yajing, Sun | Sanganyado, Edmond | Wenhua, Liu
Cetaceans accumulate persistent and toxic substances such as polybrominated diphenyl ethers in their tissue. PBDEs are ubiquitous in marine environments, and their exposure to mammals is linked to numerous health effects such as endocrine disruption, neurotoxicity, carcinogenicity, and fetal toxicity. However, the toxicological effects and mechanism of toxicity in cetaceans remains poorly understood. The effects of BDE-47 (0.1–0.5 μg mL⁻¹), BDE-100 (0.1–0.5 μg mL⁻¹), and BDE-209 (0.25–1.0 μg mL⁻¹) exposure on cell viability, oxidative stress, mitochondrial structure, and apoptosis were evaluated using a recently established pantropical spotted dolphin (Stenella attenuata) skin fibroblast cell line (PSD-LWHT) as an in vitro model. However, the production of reactive oxygen species (ROS) increased following exposure to 1.0 μg mL⁻¹ PBDE while superoxide anion, hydroxyl radicals, and inducible nitric oxide increased in a dose-dependent manner. At 0.5–1.0 μg mL⁻¹, PBDEs significantly reduced the mitochondrial membrane potential. In addition, exposure to BDE-47 and -209 significantly affected mitochondrial structure as well as cell signaling and transduction compared to BDE-100. Although PBDE exposure did not affect cell viability, a significant increase in cell apoptosis markers (Bcl2 and caspase-9) was observed. This study demonstrated that BDE-47, -100, and −209 congeners might cause cytotoxic and genotoxic effects as they play a crucial role in the dysregulation of oxidative stress and alteration of mitochondrial and cell membrane structure and activity in the fibroblast cells. Hence, these results suggest that PBDEs might have adverse health effects on cetaceans inhabiting contaminated marine environments.
اظهر المزيد [+] اقل [-]Drp1-mediated mitochondrial fission contributes to mitophagy in paraquat-induced neuronal cell damage
2021
Chen, Nengzhou | Guo, Zhenkun | Luo, Zhousong | Zheng, Fuli | Shao, Wenya | Yu, Guangxia | Cai, Ping | Wu, Siying | Li, Huangyuan
Paraquat (PQ) is one of the most widely used herbicides in the world due to its excellent weed control effects. Accumulating evidence has revealed that long-term exposure to PQ can significantly increase the risk of Parkinson’s disease (PD). However, the underlying molecular mechanisms are yet to be fully understood. Hence, we investigated the potential role of reactive oxygen species (ROS) and dynamin-related protein 1 (DRP1) in PQ-induced mitophagy, aiming to elaborate on possible molecular mechanisms involved in PQ-triggered neurotoxicity. Our results showed that ROS were increased, mitochondrial membrane potential was decreased at 100, 200, and 300 μM PQ concentrations, and autophagy pathways were activated at a concentration of 100 μM in neuronal cells. In addition, excessive mitophagy was observed in neurons exposed to 300 μM PQ for 24 h. Then, ROS-mediated mitochondrial fission was found to contribute to PQ-induced excessive mitophagy. Moreover, all aforementioned changes were significantly ameliorated by mdivi-1. Thus, our findings provide a novel neurotoxic mechanism and reveal the DRP1-mitochondrial fission pathway as a potential target for treatments of PQ-induced excessive mitophagy, serving as an alternative target for the prevention and treatment of Parkinson’s disease. Because harmful substances are transmitted and enriched in the food chain, the toxic effect of environmental paraquat is nonnegligible, and more investigations are needed.
اظهر المزيد [+] اقل [-]Paraquat-induced oxidative stress regulates N6-methyladenosine (m6A) modification of circular RNAs
2021
Chen, Nengzhou | Tang, Jianping | Su, Qianqian | Chou, Wei-Chun | Zheng, Fuli | Guo, Zhenkun | Yu, Guangxia | Shao, Wenya | Li, Huangyuan | Wu, Siying
Paraquat (PQ), a widely used herbicide and well-known oxidative stress inducer, has been linked to numerous neurodegenerative diseases, but the underlying mechanism(s) remains unknown. Circular RNAs (circRNAs) have recently been reported to be associated with oxidative stress in Parkinson's disease. Herein, we performed methylated RNA immunoprecipitation and RNA sequencing assays for mouse neuroblastoma (Neuro-2a) cells and successfully established a positive link between the alteration of circRNAs driven by m⁶A modification and PQ-induced oxidative stress. We observed oxidative stress and antioxidative stress present distinct m⁶A modification pattern of circRNAs as well as biological effect. Gene ontology and pathway analysis predicted that differentially m⁶A-methylated and expressed circRNAs are highly clustered in pathways associated with function and development of nervous system, including axon cargo transport, nervous system development, long-term potentiation, and neurotrophic signaling pathways. Moreover, we demonstrated that the alteration of m⁶A-methylated circRNAs upon PQ exposure could be partially reversed by N-acetylcysteine pretreatment. The mechanistic analysis further demonstrated that N-acetylcysteine pretreatment attenuated the decreased expression of target genes (UBC and PPP2CA) induced by PQ. These findings revealed distinct patterns of differentially m⁶A-modified circRNAs, indicating that m⁶A could participate in a specific regulatory network of circRNAs to modulate the expression of downstream genes in response to PQ-induced oxidative stress. In conclusion, our work established a link between m⁶A modification of circRNAs and PQ-induced oxidative stress, and further studies are required to explore the underlying molecular mechanisms associated with PQ-induced neurotoxicity.
اظهر المزيد [+] اقل [-]The role of NLRP3 in lead-induced neuroinflammation and possible underlying mechanism
2021
Su, Peng | Wang, Diya | Cao, Zipeng | Chen, Jingyuan | Zhang, Jianbin
Neuroinflammation induced by lead exposure (Pb) is a major cause of neurotoxicity of Pb in the central nervous system (CNS). The NLR family, domain of pyrin containing 3 (NLRP3) involves in various neurological diseases, while the question of whether NLRP3 plays a role in lead-induced neuroinflammation has not yet been reported.Developmental and knockout (KO) NLRP3 mice were used to establish two in vivo models, and BV2 cells were used to establish an in vitro model. Behavioral and electrophysiologic tests were used to assess the neurotoxicity of Pb, and immunofluorescence staining was used to assess neuroinflammation. Real-time PCR and western blot were performed to examine the mRNA and protein levels of inflammatory cytokines and NLRP3 inflammasomes. siRNA technology was used to block NLRP3 expression.Pb exposure led to neural injure and microglial activation in the hippocampus region, while minocycline intervention attenuated Pb-induced neurotoxicity by inhibiting neuroinflammation. Pb increased the expression of NLRP3 and promoted cleavage of caspase-1 in mRNA and protein levels, and minocycline partially reversed the effects of Pb on NLRP3 inflammasomes. Blocking of NLRP3 by KO mice or siRNA attenuated neural alterations induced by Pb, weakened microglial activation in vivo and in vitro as well, without affecting the accumulation of Pb. Pb increased autophagic protein levels and phosphorylation of NF-κB, while suppressing autophagy or NF-κB inhibited Pb's effects on NLRP3.NLRP3 is involved in the regulation of Pb-induced neurotoxicity. These findings expand mechanism research of Pb neurotoxicity and may help establish new prevention strategies for Pb neurotoxicity.
اظهر المزيد [+] اقل [-]Application of transcriptome analysis to understand the adverse effects of hydrogen peroxide exposure on brain function in common carp (Cyprinus carpio)
2021
Jia, Rui | Du, Jinliang | Cao, Liping | Feng, Wenrong | He, Qin | Xu, Pao | Yin, Guojun
Hydrogen peroxide (H₂O₂), as a common disinfectant, has been extensively used in aquaculture. The toxicity of high ambient H₂O₂ for gills and liver of fish has received attention from many researchers. However, whether H₂O₂ exposure induced brain injury and neurotoxicity has not been reported in fish. Therefore, this study aimed to explore the potential mechanism of H₂O₂ toxicity in brain of common carp via transcriptome analysis and biochemical parameter detection. The fish were exposed to 0 (control) and 1 mM of H₂O₂ for 1 h per day lasting 14 days. The results showed that H₂O₂ exposure caused oxidative damage in brain evidenced by decreased glutathione (GSH), total antioxidant capacity (T-AOC) and nicotinamide adenine dinucleotide (NAD⁺) levels, and increased formation of malondialdehyde (MDA) and 8-hydroxy-2′-deoxyguanosine (8-OHdG). Meanwhile, H₂O₂ exposure reduced 5-hydroxytryptamine (5-HT) level, and down-regulated tryptophan hydroxylase 1 (tph1a), tph2, 5-hydroxytryptamine receptor 1A-beta (htr1ab) and htr2b expression in brain. Transcriptome analysis showed that H₂O₂ exposure up-regulated 604 genes and down-regulated 1209 genes in brain. Go enrichment displayed that the differently expressed genes (DEGs) were enriched mainly in cellular process, single-organism process, metabolic process, and biological regulation in the biological process category. Further, KEGG enrichment indicated that H₂O₂ exposure led to dysregulation of neurotransmitter signals including depression of glutamatergic synapse, GABAergic synapse and endocannabinoid signaling. Also, we found the alteration of three key pathways including calcium, cAMP and HIF-1 in brain after H₂O₂ exposure. In conclusion, our data indicated that H₂O₂ exposure induced oxidative damage and neurotoxicity, possibly related to dysregulation of neurotransmitters and calcium, cAMP and HIF-1 signaling pathways, which may adversely affect learning, memory and social responses of common carp. This study provided novel insight into biological effects and underlying mechanism of H₂O₂ toxicity in aquatic animal, and contributed to proper application of H₂O₂ in aquaculture.
اظهر المزيد [+] اقل [-]Bio-accumulation of organic contaminants in Indo-Pacific humpback dolphins: Preliminary unique features of the brain and testes
2020
Sun, Xian | Zhan, Fengping | Yu, Ri-Qing | Chen, Laiguo | Wu, Yuping
There is little information about the residue levels and congener composition of organic contaminants (OCs) in cetaceans. In the present study, we investigated the polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in the blubber, blood, brain and testes of Indo-Pacific humpback dolphins (Sousa chinensis) stranded in the Pearl River Estuary (PRE), China. The lowest blubber/tissue partition coefficients were found for sum hexachlorocyclohexanes (ΣHCHs) and ΣPAHs, while the highest were in ΣPCBs and sum dichlorodiphenyltrichloroethanes (ΣDDTs), likely attributing to the octanol-water partition features. The low levels of OCs in brain and testes theoretically resulted from the blood-brain barrier, blood-testes barrier, contaminant molecule dimensions and unique lipid compositions in the brain and testes. Compared with other contaminants, the higher mean brain/blood and testes/blood partition coefficients found for mirex, heptachlor, dieldrin and endrin would increase the risks associated with exposure-related toxicity and the bioavailability of contaminants within these tissues. Observations also suggest that as lipid mobilizes from blubber, contaminants may redistribute, leading to elevated tissue (such as brain) concentrations. Therefore, dolphins with less blubber may be more susceptible to health risks. The Indo-Pacific humpback dolphins living in PRE are at great risk due to variety of OCs in indirect contact with non-target organisms, affecting the health of animals (toxic effects and accumulation). Our findings contribute to the knowledge of the potential effects of OCs exposure on developmental neurotoxicity and reproductive damage in marine mammals.
اظهر المزيد [+] اقل [-]