خيارات البحث
النتائج 1 - 10 من 533
Nutrient concentrations in the foliage of beech (Fagus sylvatica L.) and Norway spruce (Picea abies L. Karst.) plants of a model ecosystem in response to long-term exposure to atmospheric CO2 enrichment and increased N deposition
2002
Landolt, W. | Egli, P. | Pezzotta, D. | Bucher, J. B. (Swiss Federal Research Institute WSL, Birmensdorf (Switzerland))
The biological effects of both elevated CO2 and N deposition on model ecosystem were investigated in the Birmensdorf open-top chamber facility. Each of the 16 chambers was divided into two compartments with a ground area of 3 msub2 and filled with natural unfertilized forest soils from two sites (one acidic, the other calcareous). Elevated CO2 significantly increased O and Zn concentrations in beech leaves and those of Zn in spruce needles on the calcareous soils. Enhanced N deposition also led to a dilution of nutrients and increased N contents
اظهر المزيد [+] اقل [-]Soil N2O emission in Cinnamomum camphora plantations along an urbanization gradient altered by changes in litter input and microbial community composition النص الكامل
2022
Xu, Xintong | He, Chang | Zhong, Chuan | Zhang, Qiang | Yuan, Xi | Hu, Xiaofei | Deng, Wenping | Wang, Jiawei | Du, Qu | Zhang, Ling
Urbanization alters land use, increasing the rate of greenhouse gas (GHG) emissions and hence atmospheric compositions. Nitrous oxide (N₂O) is a major GHG that contributes substantially to global warming. N₂O emissions are sensitive to changes in substrate availabilities, such as litter and N input, as well as micro-environmental factors caused by land-use change upon urbanization. However, the potential impacts of changing litter and N on soil N₂O emissions along urban-rural gradients is not well understood. Here, we conducted an in situ study over 19 months in Cinnamomum camphora plantations along an urban-rural gradient, to examine the effects of the urban-rural gradient, N and litter input on N₂O emissions from C. camphora plantation soils and the underlying mechanisms via N, litter and microbial communities. The results showed that urban soil N₂O emissions were 105% and 196% higher than those from suburban and rural soil, respectively, and co-occurred with a higher abundance of AOA, nirS and nirK genes. Litter removal increased cumulative N₂O emissions by 59.7%, 50.9% and 43.3% from urban, suburban and rural soils, respectively. Compared with litter kept treatment, increases in AOA and nirK abundance were observed in urban soil, and higher rural nirS abundance occurred following litter removal. Additionally, the relatively higher soil temperature and available N content in the urban soil increased N₂O emissions compared with the suburban and rural soil. Therefore, in addition to changes in microbial communities and abiotic environmental factors, litter kept in C. camphora plantations along an urban-rural gradient is also important in mitigating N₂O emissions, providing a potential strategy for the mitigation of N₂O emissions.
اظهر المزيد [+] اقل [-]Comparison of spatial and temporal changes in riverine nitrate concentration from terrestrial basins to the sea between the 1980s and the 2000s in Japan: Impact of recent demographic shifts النص الكامل
2021
Shibata, Hideaki | Ban, Ryosuke | Hirano, Nanae | Eguchi, Sadao | Mishima, Shin-Ichiro | Chiwa, Masaaki | Yamashita, Naoyuki
Nitrogen (N) is an essential nutrient but may become a pollution source in the environment when the N concentration exceeds a certain threshold for humans and nature. Nitrate is a major N species in river water with notable spatial and temporal variations under the influences of natural factors and anthropogenic N inputs. We analyzed the relationship between riverine N (focusing on nitrate) concentration and various factors (land use, climate, basin topography, atmospheric N deposition, agricultural N sources and human-derived N) in 104 rivers located throughout the Japanese Archipelago except small remote islands. We aimed to better understand processes and mechanisms to explain the spatial and temporal changes in riverine nitrate concentration. A publicly available river water quality database observed in the 1980s (1980–1989) and 2000s (2000–2009) was used. This study is the first to evaluate the long-term scale of 20 years in the latter half of Japan's economic growth period at the national level. A geographic information system (GIS) was employed to determine average values of each variable collected from multiple sources of statistical data. We then performed regression analysis and structural equation modeling (SEM) for each period. The forestland area influenced by the basin topography, climate (i.e., air temperature) and other land uses (i.e., farmland and urban area) played a major role in decreasing nitrate concentrations in both the 1980s and 2000s. Atmospheric N deposition (especially N oxides) and agricultural N sources (fertilizer and manure) were also significant variables regarding the spatial variations in riverine nitrate concentrations. The SEM results suggested that human-derived N (via food consumption) intensified by demographic shifts during the 2000s increased riverine nitrate concentrations over other variables within the context of spatial variation. These findings facilitate better decision making regarding land use, agricultural practices, pollution control and individual behaviors toward a sustainable society.
اظهر المزيد [+] اقل [-]N2O emissions and product ratios of nitrification and denitrification are altered by K fertilizer in acidic agricultural soils النص الكامل
2020
Li, Zhiguo | Xia, Shujie | Zhang, Runhua | Zhang, Runqin | Chen, Fang | Liu, Yi
Potassium (K) fertilizer plays an important role in increasing crop yield, quality, and nitrogen use efficiency. However, little is known about its environmental impacts, such as its effects on emissions of the greenhouse gas nitrous oxide (N₂O). A nitrogen-15 (¹⁵N) tracer laboratory experiment was therefore performed in an acidic agricultural soil in the suburbs of Wuhan, central China, to determine the effects of K fertilizer on N₂O emissions and nitrification/denitrification product ratios under N fertilization. During 15-d incubation periods with a fixed initial N concentration (80 mg kg⁻¹), K application increased average N₂O emission rates significantly (1.6–10.8-fold) compared to the control treatment. N₂O emissions derived from nitrification and denitrification both increased in K-treated soil, and denitrification contributed more to the increase; its contribution ratio rose from 32% without K fertilizer to 53% with 300 mg kg⁻¹ of K applied. The increase in N₂O emissions under K fertilization is probably due to an increase in the activity of denitrifying microorganisms and acid-resistant nitrifying microorganisms caused by higher K⁺ concentrations and lower soil pH. Combined treatment with potassium chloride (KCl) and N fertilizer produced lower N₂O emissions than combined treatment with potassium sulfate (K₂SO₄) and N fertilizer during 15-d incubation periods. Our results imply that there are significant interaction effects between N fertilizers and K fertilizers on N₂O emissions. In particular, combining N fertilizers with fertilizers that reduce soil acidity or contain Cl or K ions may significantly affect agricultural N₂O emissions.
اظهر المزيد [+] اقل [-]Temporal variation in zooplankton and phytoplankton community species composition and the affecting factors in Lake Taihu—a large freshwater lake in China النص الكامل
2019
Li, Cuicui | Feng, Weiying | Chen, Haiyan | Li, Xiaofeng | Song, Fanhao | Guo, Wenjing | Giesy, John P. | Sun, Fuhong
Monitoring diverse components of aquatic ecosystems is vital for elucidation of diversity dynamics and processes, which alter freshwater ecosystems, but such studies are seldom conducted. Phytoplankton and zooplankton are integral components which play indispensable parts in the structure and ecological service function of water bodies. However, few studies were made on how zooplankton and phytoplankton community may respond simultaneously to change of circumstance and their mutual relationship. Therefore, we researched synchronously the phytoplankton communities as well as zooplankton communities based on monthly monitoring data from September 2011 to August 2012 in heavily polluted areas and researched their responses to variation in environmental parameters and their mutual relationship. As indicated by Time-lag analysis (TLA), the long-term dynamics of phytoplankton and zooplankton were undergoing directional variations, what's more, there exists significant seasonal variations of phytoplankton and zooplankton communities as indicated by Non-Metric Multidimensional scaling (NMDS) methods. Also, Redundancy Analysis (RDA) demonstrated that environmental indicators together accounted for 25.6% and 50.1% variance of phytoplankton and zooplankton, respectively, indicating that environmental variations affected significantly on the temporal dynamics of phytoplankton as well as zooplankton communities. What's more, variance partioning suggested that the major environmental factors influencing variation structures of zooplankton communities were water temperature, concentration of nitrogen, revealing the dominating driving mechanism which shaped the communities of zooplankton. It was also found that there was significant synchronization between zooplankton biomass and phytoplankton biomass (expressed as Chl-a concentration), which suggested that zooplankton respond to changes in dynamic structure of phytoplankton community and can initiate a decrease in phytoplankton biomass through grazing in a few months.
اظهر المزيد [+] اقل [-]Biomonitoring freshwater FISH farms by measuring nitrogen concentrations and the δ15N signal in living and devitalized moss transplants النص الكامل
2019
Carballeira, C. | Carballeira, A. | Aboal, J.R. | Fernández, J.A.
The trophic balance of freshwater aquaculture activities has traditionally been monitored by chemical analysis of water; however, the parameters measured are usually characterized by high temporal variability. Aquatic mosses can be used as biomonitors as they integrate both continuous and episodic contamination events. Here we report, for the first time, a method for monitoring N enrichment in the surroundings of fish farms by measuring the N content and isotopic signal (δ15N) of transplanted living and devitalized specimens of the aquatic moss Fontinalis antipyretica. For this purpose, moss samples (“moss bags”) were exposed at increasing distances (10, 100, 300 and 1000 m) up- and downstream of the effluent discharge points of four trout farms, for 10 and 30 days. The low natural (background) variability in δ15N in upstream samples enabled detection of outlier values, caused by aquaculture discharges, at distances of 10 and 100 m downstream, especially in devitalized moss and after 10 days of exposure. However, the unexpectedly low N contents of moss samples exposed close to the discharge points complicates interpretation of the high levels of N forms detected by conventional physicochemical analysis of water. Although the mechanisms that modify N parameters in moss tissues were not clear, measurement of the isotopic signal δ15N in devitalized moss exposed for 10 days proved useful for monitoring the N pollution associated with intensive freshwater aquaculture.
اظهر المزيد [+] اقل [-]Effects of elevated CO2 on the phytoremediation efficiency of Noccaea caerulescens النص الكامل
2019
Luo, Jie | Yang, Ge | Igalavithana, Avanthi Deshani | He, Wenxiang | Gao, Bin | Tsang, Daniel C.W. | Ok, Yong Sik
Concentrations of atmospheric carbon dioxide have been continuously increasing, and more investigations are needed in regard to the responses of various plants to the corresponding climatic conditions. In particular, potential variations in phytoremediation efficiency induced by global warming have rarely been investigated. Objective of this research was to evaluate the changes in phytoremediation efficiency of Noccaea caerulescens exposed to different concentrations of CO2. The concentrations of CO2 in the elevated CO2 treatments were adjusted to 550 ± 50 ppm to match the level of atmospheric CO2 predicted in 2050–2070. Compared to ambient controls (400 ppm), biomass yields and metal concentrations of N. caerulescens increased under elevated CO2 conditions, thus indicating that the phytoremediation efficiency of the species could increase in higher CO2 environment. In addition, water soluble and exchangeable Pb and Cu concentrations in soils decreased under elevated CO2 conditions, which reduced the leaching risks of the metals. The concentrations of malondialdehyde (MDA) of N. caerulescens decreased to different degrees with the increased CO2 concentrations. The overall findings suggested that elevations in CO2 can reduce the oxidative damage caused by metals in this species. The phytoremediation efficiency of N. caerulescens grown in multiple metal-enriched soils could be enhanced with global warming.
اظهر المزيد [+] اقل [-]Differential patterns of nitrogen and δ15N in soil and foliar along two urbanized rivers in a subtropical coastal city of southern China النص الكامل
2019
Mgelwa, Abubakari Said | Hu, Ya-Lin | Liu, Jin-Fu | Qiu, Qingyan | Liu, Zheng | Yannick Ngaba, Mbezele Junior
Urbanization usually pollutes the environment leading to alterations in key biogeochemical cycles. Therefore, understanding its effects on forest nitrogen (N) saturation is becoming increasingly important for addressing N pollution challenges in urban ecosystems. In this study, we compared soil (N availability, net N mineralization, net nitrification, and δ¹⁵N) and foliar (N concentrations and δ¹⁵N) variables in upstream, midstream and downstream forest stands of Bailongjiang River (BJR; more urbanized) and Wulongjiang River (WJR; less urbanized), the two branches of the Minjiang River Estuary. Total soil N, ammonium, nitrate, net N mineralization and nitrification rates, as well as soil δ¹⁵N were significantly higher in BJR compared with WJR forest stands. While no substantial difference in foliar N concentrations was noted between rivers, foliar δ¹⁵N was on average more than 2.5 times higher in BJR than WJR forest stands. Across the study area, foliar δ¹⁵N was positively related to soil δ¹⁵N, which also had positive linear relationships with soil nitrate concentrations, net N mineralization and net nitrification rates. Moreover, all variables except foliar δ¹⁵N and ammonium concentrations showed decreasing patterns in the order: upstream > midstream > downstream along the BJR forest stands. Soil ammonium and foliar values (N concentrations and δ¹⁵N) revealed clear patterns along the WJR, with the former increasing and the latter decreasing from the upstream to downstream forest stands. Our findings indicate an increase in urbanization-induced N inputs from the WJR to BJR and that forest stands along the BJR especially at the upstream have higher N availability and are shifting rapidly towards N saturation state. These results emphasize the need for effective N pollution control in urban environments through sustainable urban planning.
اظهر المزيد [+] اقل [-]Seasonal and spatial distribution of antibiotic resistance genes in the sediments along the Yangtze Estuary, China النص الكامل
2018
Guo, Xing-pan | Liu, Xinran | Niu, Zuo-shun | Lu, Da-pei | Zhao, Sai | Sun, Xiao-li | Wu, Jia-yuan | Chen, Yu-ru | Tou, Fei-yun | Hou, Lijun | Liu, Min | Yang, Yi
Antibiotics resistance genes (ARGs) are considered as an emerging pollutant among various environments. As a sink of ARGs, a comprehensive study on the spatial and temporal distribution of ARGs in the estuarine sediments is needed. In the present study, six ARGs were determined in sediments taken along the Yangtze Estuary temporally and spatially. The sulfonamides, tetracyclines and fluoroquinolones resistance genes including sul1, sul2, tetA, tetW, aac(6’)-Ib, and qnrS, were ubiquitous, and the average abundances of most ARGs showed significant seasonal differences, with relative low abundances in winter and high abundances in summer. Moreover, the relative high abundances of ARGs were found at Shidongkou (SDK) and Wusongkou (WSK), which indicated that the effluents from the wastewater treatment plant upstream and inland river discharge could influence the abundance of ARGs in sediments. The positive correlation between intI1 and sul1 implied intI1 may be related to the occurrence and propagation of sulfonamides resistance genes. Correlation analysis and redundancy discriminant analysis showed that antibiotic concentrations had no significant correlation to their corresponding ARGs, while the total extractable metal, especially the bioavailable metals, as well as other environmental factors including temperature, clay, total organic carbon and total nitrogen, could regulate the occurrence and distribution of ARGs temporally and spatially. Our findings suggested the comprehensive effects of multiple pressures on the distribution of ARGs in the sediments, providing new insight into the distribution and dissemination of ARGs in estuarine sediments, spatially and temporally.
اظهر المزيد [+] اقل [-]Nutrient-limited conditions determine the responses of foliar nitrogen and phosphorus stoichiometry to nitrogen addition: A global meta-analysis النص الكامل
2018
You, Chengming | Wu, Fuzhong | Yang, Wanqin | Xu, Zhenfeng | Tan, Bo | Yue, Kai | Ni, Xiangyin
To test the hypothesis that nutrient-limited conditions can determine the responses of nitrogen (N) and phosphorus (P) stoichiometry to N addition, a meta-analysis was conducted to identify the different responses of foliar N and P concentrations and N-to-P ratios to N addition under N limitation, N and P co-limitation and P limitation. N addition increased the foliar N-to-P ratios and N concentrations by 46.2% and 30.2%, respectively, under N limitation, by 18.7% and 19.7% under N and P co-limitation, and by 4.7% and 12.9% under P limitation. However, different responses of foliar P concentrations to N addition were observed under different nutrient limitations, and negative, positive, and neutral effects on P concentrations were observed under N limitation, P limitation and N and P co-limitation, respectively. Generally, the effects of N addition on N-to-P ratios and N concentrations in herbaceous plants were dramatically larger than those in woody plants (with the exception of the N-to-P ratio under N limitation), but the opposite situation was true for P concentrations. The changes in N-to-P ratios were closely correlated with the changes in N and P concentrations, indicating that the changes in both N and P concentrations due to N addition can drive N and P stoichiometry, but the relative sizes of the contributions of N and P varied greatly with different nutrient limitations. Specifically, the changes in N-to-P ratios may indicate a minimum threshold, which is consistent with the homeostatic mechanism. In brief, increasing N deposition may aggravate P limitation under N-limited conditions but improve P limitation under P-limited conditions. The findings highlight the importance of nutrient-limited conditions in the stoichiometric response to N addition, thereby advancing our ability to predict global plant growth with increasing N deposition in the future.
اظهر المزيد [+] اقل [-]