خيارات البحث
النتائج 1 - 10 من 54
Response to heavy nitrogen applications in fertilizer experiments in British forests.
1988
Miller H.G. | Miller J.D.
Fe3O4-urea nanocomposites as a novel nitrogen fertilizer for improving nutrient utilization efficiency and reducing environmental pollution النص الكامل
2022
Guha, Titir | Gopal, Geetha | Mukherjee, Amitava | Kundu, Rita
Almost 81% of nitrogen fertilizers are applied in form of urea but most of it is lost due to volatilization and leaching leading to environmental pollution. In this regard, slow-release nano fertilizers can be an effective solution. Here, we have synthesized different Fe₃O₄-urea nanocomposites with Fe₃O₄ NPs: urea ratio (1:1, 1:2, 1:3) ie. NC-1, 2, and 3 respectively, and checked their efficacy for growth and yield enhancement. Oryza sativa L. cv. Swarna seedlings were treated with different NCs for 14 days in hydroponic conditions and significant up-regulation of photosynthetic efficiency and nitrogen metabolism were observed due to increased availability of nitrogen and iron. The discriminant functional analysis confirmed that the NC3 treatment yielded the best results so further gene expression studies were performed for NC-3 treated seedlings. Significant changes in expression profiles of ammonia and nitrate transporters indicated that NC-3 treatment enhanced nitrogen utilization efficiency (NUE) due to sustained slow release of urea. From pot experiments, we found significant enhancement of growth, grain nutrient content, and NUE in NC supplemented sets. 1.45 fold increase in crop yield was achieved when 50% N was supplemented in form of NC-3 and the rest in form of ammonium nitrate. NC supplementation can also play a vital role in minimizing the use of bulk N fertilizers because, when 75% of the recommended N dose was supplied in form of NC-3, 1.18 fold yield enhancement was found. Thus our results highlight that, slow-release NC-3 can play a major role in increasing the NUE of rice.
اظهر المزيد [+] اقل [-]Ammonium detoxification mechanism of ammonium-tolerant duckweed (Landoltia punctata) revealed by carbon and nitrogen metabolism under ammonium stress النص الكامل
2021
Tian, Xueping | Fang, Yang | Jin, Elaine | Yi, Zhuolin | Li, Jinmeng | Du, Anping | He, Kaize | Huang, Yuhong | Zhao, Hai
In this work, the ammonium-tolerant duckweed Landoltia punctata 0202 was used to study the effect of ammonium stress on carbon and nitrogen metabolism and elucidate the detoxification mechanism. The growth status, protein and starch content, and activity of nitrogen assimilation enzymes were determined, and the transcriptional levels of genes involved in ion transport and carbon and nitrogen metabolism were investigated. Under high ammonium stress, the duckweed growth was inhibited, especially when ammonium was the sole nitrogen source. Ammonium might mainly enter cells via low-affinity transporters. The stimulation of potassium transport genes suggested sufficient potassium acquisition, precluding cation deficiency. In addition, the up-regulation of ammonium assimilation and transamination indicated that excess ammonium could be incorporated into organic nitrogen. Furthermore, the starch content increased from 3.97% to 16.43% and 26.02% in the mixed-nitrogen and ammonium-nitrogen groups, respectively. And the up-regulated starch synthesis, degradation, and glycolysis processes indicated that the accumulated starch could provide sufficient carbon skeletons for excess ammonium assimilation. The findings of this study illustrated that the coordination of carbon and nitrogen metabolism played a vital role in the ammonium detoxification mechanism of duckweeds.
اظهر المزيد [+] اقل [-]Responses of the nitrogen-fixing aquatic fern Azolla to water contaminated with ciprofloxacin: Impacts on biofertilization النص الكامل
2018
Gomes, Marcelo Pedrosa | de Brito, Júlio César Moreira | Carvalho Carneiro, Marília Mércia Lima | Ribeiro da Cunha, Mariem Rodrigues | Garcia, Queila Souza | Figueredo, Cleber Cunha
We investigated the ability of the aquatic fern Azolla to take up ciprofloxacin (Cipro), as well as the effects of that antibiotic on the N-fixing process in plants grown in medium deprived (-N) or provided (+N) with nitrogen (N). Azolla was seen to accumulate Cipro at concentrations greater than 160 μg g⁻¹ dry weight when cultivated in 3.05 mg Cipro l⁻¹, indicating it as a candidate for Cipro recovery from water. Although Cipro was not seen to interfere with the heterocyst/vegetative cell ratios, the antibiotic promoted changes with carbon and nitrogen metabolism in plants. Decreased photosynthesis and nitrogenase activity, and altered plant's amino acid profile, with decreases in cell N concentrations, were observed. The removal of N from the growth medium accentuated the deleterious effects of Cipro, resulting in lower photosynthesis, N-fixation, and assimilation rates, and increased hydrogen peroxide accumulation. Our results shown that Cipro may constrain the use of Azolla as a biofertilizer species due to its interference with nitrogen fixation processes.
اظهر المزيد [+] اقل [-]Heavy metals in slag affect inorganic N dynamics and soil bacterial community structure and function النص الكامل
2018
Oka, Miyuki | Uchida, François Yoshitaka
Heavy metal contamination of soil in the vicinity of mining sites is a serious environmental problem around the world when mining residue (slag) is dispersed as dust. We conducted an incubation experiment to investigate the effect of a slag containing high levels of Pb and Zn (62.2 and 33.6 g kg⁻¹ slag as PbO and ZnO, respectively, sampled from a site formerly used as a lead and zinc mine) on the nitrogen cycle when mixed with soil (0–0.048 g slag g⁻¹ soil). The nitrogen cycle provides many life supporting-functions. To assess the quality of the soil in terms of the nitrogen cycle we focused on the dynamics of nitrate and ammonium, and bacterial community structure and functions within the soil. After two weeks of pre-incubation, ¹⁵N-labeled urea (500 mg N kg⁻¹) was added to the soil. Changes in soil pH, the concentration and ¹⁵N ratio of nitrate (NO₃⁻-N) and ammonium, and bacterial relative abundance and community structure were measured. Results indicated that increasing the ratio of slag to soil had a stronger negative effect on nitrification than ammonification, as suggested by slower nitrate accumulation rates as the slag:soil ratio increased. In the treatment with the highest amount of slag, the concentration of NO₃⁻-N was 50% of that in the controls at the end of the incubation. Regarding the bacterial community, Firmicutes had a positive and Planctomycetes a negative correlation with increasing slag concentration. Bacterial community functional analysis showed the proportion of bacterial DNA sequences related to nitrogen metabolism was depressed with increasing slag, from 0.68 to 0.65. We concluded that the slag impacted the soil bacterial community structure, and consequently influenced nitrogen dynamics. This study could form the basis of further investigation into the resistance of the nitrogen cycle to contamination in relation to soil bacterial community.
اظهر المزيد [+] اقل [-]Nitrogen budget on a limestone site in the Austrian Alps
2002
Herman, F. (Institut fur Immissionsforschung und Forstchemie, Vienna (Austria). Bundesamt und Forschungscentrum fur Wald) | Smidt, S. | Englisch, M. | Feichtinger, F. | Gerzabek, M.: Haberhauer, G. | Jandl, R. | Kalina, M. | Zechmeister-Boltenstern, S.
While nitrogen input exceeded the critical loads of the WHO (1995), nitrogen deficiency and nutrient imbalances were verified by needle analyses. The atmospheric input of inorganic nitrogen was higher than the nitrogen output in 50 cm soil depth. A tracer experiment with 15N helped to prove that not more than half of the applied nitrate could be discharged. This allows the conclusion that nitrogen is stored in the system and that the site cannot yet be said to be saturated with nitrogen. The same result was also obtained by modelling
اظهر المزيد [+] اقل [-]Molybdenum-induced endogenous nitric oxide (NO) signaling coordinately enhances resilience through chlorophyll metabolism, osmolyte accumulation and antioxidant system in arsenate stressed-wheat (Triticum aestivum L.) seedlings النص الكامل
2022
Alamri, Saud | Siddiqui, Manzer H. | Mukherjee, Soumya | Kumar, Ritesh | Kalaji, Hazem M. | Irfan, Mohammad | Minkina, Tatiana | Rajput, Vishnu D.
There is little information available to decipher the interaction between molybdenum (Mo) and nitric oxide (NO) in mitigating arsenic (Asⱽ) stress in plants. The present work highlights the associative role of exogenous Mo and endogenous NO signaling in regulating Asⱽ tolerance in wheat seedlings. Application of Mo (1 μM) on 25-day-old wheat seedlings grown in the presence (5 μM) or absence of Asⱽ stress caused improvement of photosynthetic pigment metabolism, reduction of electrolytic leakage and reactive oxygen species (ROS), and higher accumulation of osmolytes (proline and total soluble sugars). The molybdenum treatment upregulated antioxidative enzymes, such as superoxide dismutase, ascorbate peroxidase and glutathione reductase. In addition, the accumulation of nonenzymatic antioxidants (ascorbate and glutathione) was correlated with an increase in ascorbate peroxidase and glutathione reductase activity. The application of cPTIO (endogenous NO scavenger; 100 μM) reversed the Mo-mediated effects, thus indicating that endogenous NO may accompany Mo-induced mitigation of Asⱽ stress. Mo treatment stimulated the accumulation of endogenous NO in the presence of Asⱽ stress. Thus, it is evident that Mo and NO-mediated Asⱽ stress tolerance in wheat seedlings are primarily operative through chlorophyll restoration, osmolytes accumulation, reduced electrolytic leakage, and ROS homeostasis.
اظهر المزيد [+] اقل [-]The combined supplementation of melatonin and salicylic acid effectively detoxifies arsenic toxicity by modulating phytochelatins and nitrogen metabolism in pepper plants النص الكامل
2022
Kaya, Cengiz | Sarıoglu, Ali | Ashraf, Muhammad | Alyemeni, Mohammed Nasser | Ahmad, Parvaiz
The main objective of the study was to assess if joint application of melatonin (MT, 0.1 mM) and salicylic acid (SA 0.5 mM) could improve tolerance of pepper plants to arsenic (As) as sodium hydrogen arsenate heptahydrate (0.05 mM). The imposition of arsenic stress led to accumulation of As in roots and leaves, and increased contents of leaf proline, phytochelatins, malondialdehyde (MDA) and H₂O₂, but it reduced plant biomass, chlorophylls (Chl), PSII maximum efficiency (Fv/Fm) and leaf water potential. Melatonin and SA applied jointly or alone enhanced nitrogen metabolism by triggering the activities of glutamate synthase, glutamine synthetase, and nitrite reductases and nitrate. In comparison with a single treatment of MT or SA, the joint treatment of MT and SA had better impact on enhancing growth and key biological events and decreasing tissue As content. This clearly shows a cooperative function of both agents in enhancing tolerance to As-toxicity in pepper plants.
اظهر المزيد [+] اقل [-]Toxicity of tire wear particles and the leachates to microorganisms in marine sediments النص الكامل
2022
Liu, Yan | Zhou, Hao | Yan, Ming | Liu, Yang | Ni, Xiaoming | Song, Jinbo | Yi, Xianliang
Tire wear particles (TWPs), which are among the microplastic pollutants in the environment, can inevitably accumulate in coastal sediments. The present study comprehensively investigated the effect of pristine TWPs on bacterial community structure in coastal sediments and compared the effect of pristine TWPs and aged TWPs on nine strains of bacteria in sediments. In addition, the effect of the TWP leachate was studied with all the nine bacterial strains and the toxicity-causing substances in the leachate was investigated using Bacillus subtilis. Exposure to TWPs could lead to a shift in bacteria community and affect nitrogen metabolism in marine sediments. Aged TWPs were more toxic than pristine TWPs due to changes in particle surface characteristics. The leachate exhibited greater toxicity than TWPs as well, and Zn was identified to be the major toxicity-causing substance. The overall results of this study are important for understanding the effects of TWPs and the leachates on microorganisms in marine sediments.
اظهر المزيد [+] اقل [-]Epiphytic bryophytes as bio-indicators of atmospheric nitrogen deposition in a subtropical montane cloud forest: Response patterns, mechanism, and critical load النص الكامل
2017
Shi, Xian-Meng | Song, Liang | Liu, Wen-Yao | Lu, Hua-Zheng | Qi, Jin-Hua | Li, Su | Chen, Xi | Wu, Jia-Fu | Lichuanjushi, | Wu, Chuan-Sheng
Increasing trends of atmospheric nitrogen (N) deposition due to pollution and land-use changes are dramatically altering global biogeochemical cycles. Bryophytes, which are extremely vulnerable to N deposition, often play essential roles in these cycles by contributing to large nutrient pools in boreal and montane forest ecosystems. To interpret the sensitivity of epiphytic bryophytes for N deposition and to determine their critical load (CL) in a subtropical montane cloud forest, community-level, physiological and chemical responses of epiphytic bryophytes were tested in a 2-year field experiment of N additions. The results showed a significant decrease in the cover of the bryophyte communities at an N addition level of 7.4 kg ha−1 yr−1, which is consistent with declines in the biomass production, vitality, and net photosynthetic rate responses of two dominant bryophyte species. Given the background N deposition rate of 10.5 kg ha−1yr−1 for the study site, a CL of N deposition is therefore estimated as ca. 18 kg N ha−1 yr−1. A disordered cellular carbon (C) metabolism, including photosynthesis inhibition and ensuing chlorophyll degradation, due to the leakage of magnesium and potassium and corresponding downstream effects, along with direct toxic effects of excessive N additions is suggested as the main mechanism driving the decline of epiphytic bryophytes. Our results confirmed the process of C metabolism and the chemical stability of epiphytic bryophytes are strongly influenced by N addition levels; when coupled to the strong correlations found with the loss of bryophytes, this study provides important and timely evidence on the response mechanisms of bryophytes in an increasingly N-polluted world. In addition, this study underlines a general decline in community heterogeneity and biomass production of epiphytic bryophytes induced by increasing N deposition.
اظهر المزيد [+] اقل [-]