خيارات البحث
النتائج 1 - 10 من 13
Stereoselective effects of ibuprofen in adult zebrafish (Danio rerio) using UPLC-TOF/MS-based metabolomics
2018
Song, Yue | Chai, Tingting | Yin, Zhiqiang | Zhang, Xining | Zhang, Wei | Qian, Yong-Zhong | Qiu, Jing
Ibuprofen (IBU), as a commonly used non-steroidal anti-inflammatory drug (NSAID) and pharmaceutical and personal care product (PPCP), is frequently prescribed by doctors to relieve pain. It is widely released into environmental water and soil in the form of chiral enantiomers by the urination and defecation of humans or animals and by sewage discharge from wastewater treatment plants. This study focused on the alteration of metabolism in the adult zebrafish (Danio rerio) brain after exposure to R-(-)-/S-(+)-/rac-IBU at 5 μg L−1 for 28 days. A total of 45 potential biomarkers and related pathways, including amino acids and their derivatives, purine and its derivatives, nucleotides and other metabolites, were observed with untargeted metabolomics. To validate the metabolic disorders induced by IBU, 22 amino acids and 3 antioxidant enzymes were selected to be quantitated and determined using targeted metabolomics and enzyme assay. Stereoselective changes were observed in the 45 identified biomarkers from the untargeted metabolomics analysis. The 22 amino acids quantitated in targeted metabolomics and 3 antioxidant enzymes determined in enzyme assay also showed stereoselective changes after R-(-)-/S-(+)-/rac-IBU exposure. Results showed that even at a low concentration of R-(-)-/S-(+)-/rac-IBU, disorders in metabolism and antioxidant defense systems were still induced with stereoselectivity. Our study may enable a better understanding of the risks of chiral PPCPs in aquatic organisms in the environment.
اظهر المزيد [+] اقل [-]Advances in understanding the mechanisms of mercury toxicity in wild golden grey mullet (Liza aurata) by 1H NMR-based metabolomics
2016
Cappello, Tiziana | Pereira, Patrícia | Maisano, Maria | Mauceri, Angela | Pacheco, Mario | Fasulo, Salvatore
Mercury (Hg) is recognized as a dangerous contaminant due to its bioaccumulation and biomagnification within trophic levels, leading to serious health risks to aquatic biota. Therefore, there is an urgent need to unravel the mechanisms underlying the toxicity of Hg. To this aim, a metabolomics approach based on protonic nuclear magnetic resonance (1H NMR), coupled with chemometrics, was performed on the gills of wild golden grey mullets L. aurata living in an Hg-polluted area in Ria de Aveiro (Portugal). Gills were selected as target organ due to their direct and continuous interaction with the surrounding environment. As a consequence of accumulated inorganic Hg and methylmercury, severe changes in the gill metabolome were observed, indicating a compromised health status of mullets. Numerous metabolites, i.e. amino acids, osmolytes, carbohydrates, and nucleotides, were identified as potential biomarkers of Hg toxicity in fish gills. Specifically, decrease of taurine and glycerophosphocholine, along with increased creatine level, suggested Hg interference with the ion-osmoregulatory processes. The rise of lactate indicated anaerobic metabolism enhancement. Moreover, the increased levels of amino acids suggested the occurrence of protein catabolism, further supported by the augmented alanine, involved in nitrogenous waste excretion. Increased level of isobutyrate, a marker of anoxia, was suggestive of onset of hypoxic stress at the Hg contaminated site. Moreover, the concomitant reduction in glycerophosphocholine and phosphocholine reflected the occurrence of membrane repair processes. Finally, perturbation in antioxidant defence system was revealed by the depletion in glutathione and its constituent amino acids. All these data were also compared to the differential Hg-induced metabolic responses previously observed in liver of the same mullets (Brandão et al., 2015). Overall, the environmental metabolomics approach demonstrated its effectiveness in the evaluation of Hg toxicity mechanisms in wild fish under realistic environmental conditions, uncovering tissue-specificities regarding Hg toxic effects namely in gills and liver.
اظهر المزيد [+] اقل [-]Role of miR164 in the growth of wheat new adventitious roots exposed to phenanthrene
2021
Li, Jinfeng | Zhang, Huihui | Zhu, Jiahui | Shen, Yu | Zeng, Nengde | Liu, Shiqi | Wang, Huiqian | Wang, Jia | Zhan, Xinhua
Polycyclic aromatic hydrocarbons (PAHs), ubiquitous organic pollutants in the environment, can accumulate in humans via the food chain and then harm human health. MiRNAs (microRNAs), a kind of non-coding small RNAs with a length of 18–30 nucleotides, regulate plant growth and development and respond to environmental stress. In this study, it is demonstrated that miR164 can regulate root growth and adventitious root generation of wheat under phenanthrene exposure by targeting NAC (NAM/ATAF/CUC) transcription factor. We observed that phenanthrene treatment accelerated the senescence and death of wheat roots, and stimulated the occurrence of new roots. However, it is difficult to compensate for the loss caused by old root senescence and death, due to the slower growth of new roots under phenanthrene exposure. Phenanthrene accumulation in wheat roots caused to generate a lot of reactive oxygen species, and enhanced lipoxygenase activity and malonaldehyde concentration, meaning that lipid peroxidation is the main reason for root damage. MiR164 was up-regulated by phenanthrene, enhancing the silence of NAC1, weakening the association with auxin signal, and inhibiting the occurrence of adventitious roots. Phenanthrene also affected the expression of CDK (the coding gene of cyclin-dependent kinase) and CDC2 (a gene regulating cell division cycle), the key genes in the cell cycle of pericycle cells, thereby affecting the occurrence and growth of lateral roots. In addition, NAM (a gene regulating no apical meristem) and NAC23 may also be related to the root growth and development in wheat exposed to phenanthrene. These results provide not only theoretical basis for understanding the molecular mechanism of crop response to PAHs accumulation, but also knowledge support for improving phytoremediation of soil or water contaminated by PAHs.
اظهر المزيد [+] اقل [-]Physiological stress response of the scleractinian coral Stylophora pistillata exposed to polyethylene microplastics
2020
Lanctôt, Chantal M. | Bednarz, Vanessa N. | Melvin, Steven | Jacob, Hugo | Oberhaensli, François | Swarzenski, Peter W. | Ferrier-Pagès, Christine | Carroll, Anthony R. | Metian, Marc
We investigated physiological responses including calcification, photosynthesis and alterations to polar metabolites, in the scleractinian coral Stylophora pistillata exposed to different concentrations of polyethylene microplastics. Results showed that at high plastic concentrations (50 particles/mL nominal concentration) the photosynthetic efficiency of photosystem II in the coral symbiont was affected after 4 weeks of exposure. Both moderate and high (5 and 50 particles/mL nominal) concentrations of microplastics caused subtle but significant alterations to metabolite profiles of coral, as determined by Nuclear Magnetic Resonance (NMR) spectroscopy. Specifically, exposed corals were found to have increased levels of phosphorylated sugars and pyrimidine nucleobases that make up nucleotides, scyllo-inositol and a region containing overlapping proline and glutamate signals, compared to control animals. Together with the photo-physiological stress response observed and previously published literature, these findings support the hypothesis that microplastics disrupt host-symbiont signaling and that corals respond to this interference by increasing signaling and chemical support to the symbiotic zooxanthellae algae. These findings are also consistent with increased mucus production in corals exposed to microplastics described in previous studies. Considering the importance of coral reefs to marine ecosystems and their sensitivity to anthropogenic stressors, more research is needed to elucidate coral response mechanisms to microplastics under realistic exposure conditions.
اظهر المزيد [+] اقل [-]Gene cloning, expression, and reducing property enhancement of nitrous oxide reductase from Alcaligenes denitrificans strain TB
2018
Wang, Yu | Wang, Zeyu | Duo, Yankai | Wang, Xiaoping | Chen, Jianmeng | Chen, Jun
Nitrous oxide (N₂O) is a potent greenhouse gas and tends to accumulate as an intermediate in the process of bacteria denitrification. To achieve complete reduction of nitrogen oxide (NOₓ) in bacteria denitrification, the structural gene nosZ encoding nitrous oxide reductase (N₂OR) was cloned from Alcaligenes denitrificans strain TB (GenBank JQ044686). The recombinant plasmid containing the nosZ gene was built, and the expression of nosZ gene in Escherichia coli was determined. Results show that the nosZ gene consisting of 1917 nucleotides achieves heterologous expression successfully by codon optimization strategy under optimal conditions (pre-induction inoculum OD₆₀₀ of 0.67, final IPTG concentration of 0.5 mM, inducing time of 6 h, and inducing temperature of 28 °C). Determination result of gas chromatography confirms that N₂O degradation efficiency of recombinant E. coli is strengthened by at least 1.92 times compared with that of original strain TB when treated with N₂O as substrate. Moreover, N₂OR activity in recombinant strain is 2.09 times higher than that in wild strain TB, which validates the aforementioned result and implies that the recombinant E. coli BL21 (DE3)-pET28b-nosZ is a potential candidate to control N₂O accumulation and alleviate greenhouse effect. In addition, the N₂OR structure and the possible N₂O binding site in Alcaligenes sp. TB are predicted, which open an avenue for further research on the relationship between N₂OR activity and its structure.
اظهر المزيد [+] اقل [-]Isolation and characterization of crude oil degrading bacteria from the Persian Gulf (Khorramshahr provenance)
2014
Hassanshahian, Mehdi | Zeynalipour, Mohammad Saleh | Musa, Farzaneh Hosseinzadeh
Fifteen crude oil degrading bacteria were isolated from oil contaminated sites in the Persian Gulf at Khorramshahr provenance. These bacteria were screened with two important factors such as growth rate on crude oil and hydrocarbon biodegradation, and then three strains were selected from 15 isolated strains for further study. One strain (PG-Z) that show the best crude oil biodegradation was selected between all isolates. Nucleotides sequencing of the gene encoding for 16S rRNA show that strain PG-Z belong to Corynebacterium variabile genus. This strain was efficient in degrading of crude oil. This strain was capable to degraded 82% of crude-oil after one week incubation in ONR7a medium. The PG-Z strain had high emulsification activity and biosurfactant production between all isolates. GC–MS analysis shows that C. variabile strain PG-Z can degrade different alkanes in crude oil.
اظهر المزيد [+] اقل [-]Detection of environmental carcinogens-DNA
1995
Pfohl Leszkowicz, A. (Ecole Nationale Superieure Agronomique de Toulouse (France). Laboratoire de Toxicologie et Securite Alimentaire) | Guillemaut, G. | Masfaraud, J.F. | Rether, B. | Haguenoer, J.M.
Molecular characterization of Toll-like receptor type-3 in mallard duck and its response to Newcastle disease virus infection
2021
Elfeil, Wael K. | Abouelmaatti, Reham R. | Talat, Shaimaa | Fawzy, Mohamed | Rady, Mohamed | Diab, Mohamed | Alkahtani, Saad | Sultan, Hesham | Sun, Changjiang | Lei, Liancheng | Han, Wenyu | Sedeik, Mahmoud | Abdel-Daim, Mohamed M.
Toll-like receptors (TLRs), type I transmembrane pattern recognition receptors (PRRs), are composed of the extracellular domain that is implicated in the recognition of microbial products and initiates the innate and adaptive immune response. Previous reports on TLRs in birds showed significant levels of inter- and intraspecific genetic variation. Little is known about the structure and function of the avian immune system, especially waterfowl species. This work aimed to identify and clone Anas platyrhynchos (mallard duck) TLR-3 (dTLR-3) and its expression level following challenge with velogenic Newcastle disease virus (NDV) as a model for waterfowl species. The mallard duck TLR-3 full-length cDNA sequence had been cloned, which consisted of 2457 nucleotides. The translated amino acid sequence showed identity degree as 97% with Muscovy duck, 95% with geese, 89% with helmeted guineafowls, 88% with the chickens TLR-3 gene, 82% with turkey TLR-3, and 79% with zebra finch, while it showed 54% with human one; the analysis data suggested that the new sequence is probably homologous to vertebrates’ TLR-3. The predicted protein encoded by the duck dTLR-3 mRNA sequence is composed of 819 amino acids. Analysis of the deduced amino acid sequence indicated that dTLR-3 has typical structural features and contains the main components of proteins in the TLR family. The dTLR-3 expressed in almost all examined tissues of mallard duck following quantitative real-time polymerase chain reaction (qPCR) analysis and using B-actin as a housekeeping gene. To check the functionality of the receptor and its role in viral infection, we evaluate the expression level in different tissues and its changes following NDV infection. The results showed significant (P < 0.05) upregulated in the brain at 24 h (1.84-fold), reached a peak at 48 h (4.82-fold), and recovered to normal levels at 72 h post-infection. These results indicate a complete and functional dTLR-3 that is orthologous to other vertebrate receptors with its potential role in early response against viral infection in mallard duck species.
اظهر المزيد [+] اقل [-]Ecology and population structure of some indigenous geese breeds and the impact of four GH and Pit-1 SNPs on their body weights
2021
Abdel Moniem, Hebatallah | Yusuf, Mohamed Sayed | Chen, Guohong
This study aims to determine the genetic correlation using nine microsatellite markers to reconstruct the history of some indigenous geese populations, along with the use of four single nucleotides polymorphisms (SNPs) to investigate their correlation with the geese body weight. Microsatellite markers are mainly used to provide updated information on changes in the population structure of geese breeds. The eight goose populations reported 24% private alleles specific for each population. Expected heterozygosity (He) ranged from 0.46 to 0.70. Three breeds were reported highly polymorphic. Inbreeding coefficient (Fis) revealed that three breeds were in a minimum level of extinction danger, while one breed was in a potential endangered situation. Phylogenetic tree, principal component analysis (PCA), and self-organizing map (SOM) were constructed using MATLAB to study the population distribution and relationship among these breeds. Four SNPs were detected, two SNPs at GH gene exon (C123T and C158T), and two SNPs at Pit-1 gene exons (G161A and T282G). Four SNP loci were reported to have a significant effect on geese body weight. They were CT genotype for C123T locus, TT genotype for C158T locus, GG genotype for G161A locus, and GG genotype for T282G locus.
اظهر المزيد [+] اقل [-]The dysregulation of unsaturated fatty acid-based metabolomics in the MNNG-induced malignant transformation of Het-1A cells
2022
Zhang, Hu | Liu, Qiwei | Zhao, Chao | Zhang, Ying | Wang, Shizhi | Liu, Ran | Pu, Yuepu | Yin, Lihong
Studies have shown that environmental carcinogens exerted an important function in the high incidence of esophageal cancer (EC). Nitrosamines have been identified as important environmental carcinogens for EC. This study aimed to investigate the metabolic disturbances and new key toxicological markers in the malignant transformation process of normal esophageal epithelial cells (Het-1A) induced by MNNG (N-methyl-N′-nitro-N-nitrosoguanidine). Untargeted metabolomic and lipidomic profiling analysis by using ultra-high-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) were applied to explore the metabolic network alterations of Het-1A cells. The metabolomic results showed that significant alterations were observed in metabolic signatures between different generations (P5, P15, P25, P35) and the control cell group (P0). A total of 48 differential endogenous metabolites were screened and identified, mainly containing fatty acids, amino acids, and nucleotides. The differential metabolites were predominantly linked to the pathway of biosynthesis of unsaturated fatty acids metabolism. The cell lipidomic profiling revealed that the most differential lipids contained fatty acids (FAs), phosphatidylcholines (PC), phosphatidylethanolamines (PE), and phosphatidylserines (PS). The enrichment of the lipidomic pathway also confirmed that the lipid metabolism of biosynthesis of unsaturated fatty acids was the significant variation during the cell malignant transformation. Furthermore, we detected the expression of the upstream regulatory enzymes related to the unsaturated fatty acids to explore the regulation mechanism. The expression of stearoyl-CoA desaturase (SCD), ELOVL fatty acid elongase 1 (ELOVL1) promoted, and fatty acid desaturase 1 (FADS1) inhibited the key fatty acids of unsaturated fatty acids metabolism compared to the control cell group. Overall, our results revealed that lipid fatty acid metabolism was involved in the malignant transformation of Het-1A cells induced by MNNG and deepened the awareness of the carcinogenic mechanism of environmental exposure pollutants.
اظهر المزيد [+] اقل [-]