خيارات البحث
النتائج 1 - 10 من 60
Combined biochar and double inhibitor application offsets NH3 and N2O emissions and mitigates N leaching in paddy fields
2022
He, Tiehu | Yuan, Junji | Xiang, Jian | Lin, Yongxin | Luo, J. (Jiafa) | Lindsey, S. B. (Stuart B.) | Liao, Xia | Liu, Deyan | Ding, Weixin
The effects of combined biochar and double inhibitor application on gaseous nitrogen (N; nitrous oxide [N₂O] and ammonia [NH₃]) emissions and N leaching in paddy soils remain unclear. We investigated the effects of biochar application at different rates and double inhibitor application (hydroquinone [HQ] and dicyandiamide [DCD]) on NH₃ and N₂O emissions, N leaching, as well as rice yield in a paddy field, with eight treatments, including conventional urea N application at 280 kg N ha⁻¹ (CN); reduced N application at 240 kg N ha⁻¹ (RN); RN + 7.5 t ha⁻¹ biochar (RNB1); RN + 15 t ha⁻¹ biochar (RNB2); RN + HQ + DCD (RNI); RNB1 + HQ + DCD (RNIB1); RNB2 + HQ + DCD (RNIB2); and a control without N fertilizer. When compared with N leaching under RN, biochar application reduced total N leaching by 26.9–34.8% but stimulated NH₃ emissions by 13.2–27.1%, mainly because of enhanced floodwater and soil NH₄⁺-N concentrations and pH, and increased N₂O emission by 7.7–21.2%, potentially due to increased soil NO₃⁻-N concentrations. Urease and nitrification inhibitor addition decreased NH₃ and N₂O emissions, and total N leaching by 20.1%, 21.5%, and 22.1%, respectively. Compared with RN, combined biochar (7.5 t ha⁻¹) and double inhibitor application decreased NH₃ and N₂O emissions, with reductions of 24.3% and 14.6%, respectively, and reduced total N leaching by up to 45.4%. Biochar application alone or combined with double inhibitors enhanced N use efficiency from 26.2% (RN) to 44.7% (RNIB2). Conversely, double inhibitor application alone or combined with biochar enhanced rice yield and reduced yield-scaled N₂O emissions. Our results suggest that double inhibitor application alone or combined with 7.5 t ha⁻¹ biochar is an effective practice to mitigate NH₃ and N₂O emission and N leaching in paddy fields.
اظهر المزيد [+] اقل [-]Nano agrochemical zinc oxide influences microbial activity, carbon, and nitrogen cycling of applied manures in the soil-plant system
2022
Shah, Ghulam Mustafa | Ali, Hifsa | Ahmad, Iftikhar | Kāmrān, Muḥammad | Hammad, Mohkum | Shah, Ghulam Abbas | Bakhat, Hafiz Faiq | Waqar, Atika | Guo, Jianbin | Dong, Renjie | Rashid, Muhammad Imtiaz
The widespread use of nano-enabled agrochemicals in agriculture for remediating soil and improving nutrient use efficiency of organic and chemical fertilizers is increasing continuously with limited understanding on their potential risks. Recent studies suggested that nanoparticles (NPs) are harmful to soil organisms and their stimulated nutrient cycling in agriculture. However, their toxic effects under natural input farming systems are just at its infancy. Here, we aimed to examine the harmful effects of nano-agrochemical zinc oxide (ZnONPs) to poultry (PM) and farmyard manure (FYM) C and N cycling in soil-plant systems. These manures enhanced microbial counts, CO₂ emission, N mineralization, spinach yield and N recovery than control (unfertilized). Soil applied ZnONPs increased labile Zn in microbial biomass, conferring its consumption and thereby reduced the colony-forming bacterial and fungal units. Such effects resulted in decreasing CO₂ emitted from PM and FYM by 39 and 43%, respectively. Further, mineralization of organic N was reduced from FYM by 32%, and PM by 26%. This process has considerably decreased the soil mineral N content from both manure types and thereby spinach yield and plant N recoveries. In the ZnONPs amended soil, only about 23% of the applied total N from FYM and 31% from PM was ended up in plants, whereas the respective fractions in the absence of ZnONPs were 33 and 53%. Hence, toxicity of ZnONPs should be taken into account when recommending its use in agriculture for enhancing nutrient utilization efficiency of fertilizers or soil remediation purposes.
اظهر المزيد [+] اقل [-]Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China’s vegetable systems: A meta-analysis
2021
Liu, Bin | Wang, Xiaozhong | Ma, Lin | Chadwick, Dave | Chen, Xinping
The combined application of organic and synthetic nitrogen (N) fertilizers is being widely recommended in China’s vegetable systems to reduce reliance on synthetic N fertilizer. However, the effect of substituting synthetic fertilizer with organic fertilizer on vegetable productivity (yield, N uptake and nitrogen use efficiency) and reactive nitrogen (Nr) losses (N₂O emission, N leaching and NH₃ volatilization) remains unclear. A meta-analysis was performed using peer-reviewed papers published from 2000 to 2019 to comprehensively assess the effects of combined application of organic and synthetic N fertilizers. The results indicate that overall, the vegetable yield, N₂O emission and NH₃ volatilization were not significantly changed, whereas N leaching was reduced by 44.6% and soil organic carbon (SOC) concentration increased by 12.5% compared to synthetic N fertilizer alone. Specifically, when synthetic N substitution rates (SRs) were ≤70%, vegetable yields and SOC concentration were increased by 5.5%–5.6% and 13.1–18.0%, and N leaching was reduced by 41.6%–48.1%. At the high substitution rate (SR>70%), vegetable yield was reduced by 13.6%, N₂O emission was reduced by 14.3%, and SOC concentration increased by 16.4%. Mixed animal-plant sources of organic N preferentially increased vegetable yield and SOC concentration, and reduced N₂O emission and N leaching compared with single sources of organic-N. Greenhouse gas (GHG) emission was decreased by 28.4%–34.9% by combined applications of organic and synthetic N sources, relative to synthetic N fertilizer alone. We conclude that appropriate rates (SR ≤ 70%) of combined applications of organic and synthetic N fertilizers could improve vegetable yields, decrease Nr and GHG emission, and facilitate sustainable development of coupled vegetable-livestock systems.
اظهر المزيد [+] اقل [-]Influence of activated biochar pellet fertilizer application on greenhouse gas emissions and carbon sequestration in rice (Oryza sativa L.) production
2021
Shin, JoungDu | Park, DoGyun | Hong, SeungGil | Jeong, Changyoon | Kim, Hyunook | Chung, W. (Woojin)
Supplemental activated biochar pellet fertilizers (ABPFs) were evaluated as a method to sequester carbon and reduce greenhouse gas (GHG) emissions, and improve rice production. The evaluated treatments were a control (standard cultivation method, no additives applied), activated rice hull biochar pellets with 40% of N (ARHBP-40%), and activated palm biochar pellets with 40% of N (APBP-40%). The N supplied by the ARHBP-40% and APBP-40% treatments reduced the need for supplemental inorganic nitrogen (N) fertilizer by 60 percent. The ARHBP-40% treatment sequestered as much as 1.23 tonne ha⁻¹ compared to 0.89 tonne ha⁻¹ in the control during the rice-growing season. In terms of greenhouse gas (GHG) emissions, CH₄ emissions were not significantly different (p > 0.05) between the control and the ARHBP-40%, while the lowest N₂O emissions (0.002 kg ha⁻¹) were observed in the ARHBP-40% during the crop season. Additionally, GHG (CO₂-equiv.) emissions from the ARHBP-40% application were reduced by 10 kg ha⁻¹ compared to the control. Plant height in the control was relatively high compared to others, but grain yield was not significantly different among the treatments. The application of the ARHBP-40% can mitigate greenhouse gas emissions and enhance carbon sequestration in crop fields, and ABPFs can increase N use efficiency and contribute to sustainable agriculture.
اظهر المزيد [+] اقل [-]Agricultural nitrogen and phosphorus balances of Korea and Japan: Highest nutrient surplus among OECD member countries
2021
Im, Chi-yŏn | Islam Bhuiyan, Mohammad Saiful | Lee, Seul Bi | Lee, Jeong Gu | Kim, Pil Joo
Excessive nutrient balance is a very crucial issue for environmental hazards. The constant addition of high-amounts of nutrient sources in agricultural production generates negative environmental conditions in Korea and Japan yet to be resolved. Therefore, it is obligatory to comprehend the nutrient (nitrogen (N) and phosphorus (P)) balance that is assessed by the difference between nutrient input and output in the soil surface in Korea and Japan. Among 34 Economic Co-operation and Development (OECD) countries, Korea and Japan had the highest N and P balances and thus both countries are primarily responsible for severe environmental pollution via nutrient release. The cultivable land area in both countries has constantly decreased during 1990–2017 at approximately 20 and 15% in Korea and Japan, respectively. Even N and P use efficiency sharply decreased with increasing N and P balance in both targeted countries. Japanese P balance, Korean N and P balances were decreased after the mid-1990s whereas, Japanese N balance almost unchanged for the last 28 years. Unlike chemical fertilizer input, Korean manure input level significantly increased from 78 kg N ha⁻¹ in 1990 to 157 kg N ha⁻¹ in 2017. Japanese manure input level was higher than that of chemical fertilizer without any big change for the last 28 years. The lion share of high N and P balance in both countries could generate from manure inputs, therefore, the number of livestock and their produced debris need to be used with more cautious for the reduction of national N and P surpluses at a benchmark level. These findings ensure to make a more environment friendly policy that can further reduce nutrient balance as well as improve soil health.
اظهر المزيد [+] اقل [-]Environmental losses and driving forces of nitrogen flow in two agricultural towns of Hebei province during 1997–2017
2020
Wang, Fangfang | Wang, Yanhua | Cai, Zucong | Chen, Xi
Excessive nitrogen (N) losses from food production and consumption have resulted in noticeable environmental impacts, e.g., air pollution and climate change, saturation of soil N, and water eutrophication. In the present study, a rural-scale N flow model was constructed in Quzhou county, Hebei province to investigate the characteristics of the N flux, N use efficiency (NUE), and N loss and their driving factors in the food production and consumption system during 1997–2017. Our results show that the N fluxes of the crop-production subsystem (CPS), the livestock-breeding subsystem (LBS), and the household-consumption subsystem (HCS) all followed an upward trend. During 1997–2017, the N losses from the system were high (51.38%), and the CPS was a major source. When the N fertilizer application level was optimal (403–475 kg N ha⁻¹), the NUE in the CPS (NUEc) decreased sharply, resulting in a higher N cost than that observed at larger scales. For the LBS, the NUE of animal feed (NUEa) was high (46.37%); however, the waste utilization rate of the HCS was below 30%. The chemical fertilizer application level, feed input, animal-food demand, and livestock manure application level were closely related to the environmental N losses. Due to the lack of reasonable N treatment and utilization methods, the increasing N losses are expected to have a large future impact on environmental issues such as haze, soil acidification, and frequent algal blooms. Therefore, adjusting N management in the processes of food production and consumption is of great significance to the improvement of global NUE and reduction of environmental pollution.
اظهر المزيد [+] اقل [-]Responses of an old and a modern Indian wheat cultivar to future O3 level: Physiological, yield and grain quality parameters
2020
A field study was conducted to understand the physiological responses, yield and grain quality of an old (HUW234) and a modern (HD3118) wheat cultivar exposed to elevated ozone (O₃). The cultivars were grown under ambient O₃ (NF) and ambient +20 ppb O₃ (NF+) conditions using open-top chambers (OTCs). The comparative study of an old and a modern cultivar showed variable physiological responses under elevated O₃ exposure. Elevated O₃ in old cultivar caused high reductions in Rubisco activity (Vcₘₐₓ) and electron transport rate (J) compared to modern cultivar with simultaneous reductions in the rate of photosynthesis and chlorophyll fluorescence. In modern cultivar, high stomatal density and conductance caused higher O₃ uptake thereby triggering more damage to the adjacent stomatal cells and photosynthetic pigments coupled with reductions in photosynthetic rate and photosynthetic nitrogen use efficiency (PNUE). Modern cultivar also showed relatively high reduction in grain yield compared to old one under NF + treatment. Furthermore, grain quality traits (such as starch, protein and amino acids) of modern cultivar were better than old cultivar under ambient O₃, but showed more deterioration under NF + treatment. Results thus indicated that modern cultivar is relatively more susceptible to O₃ and showed more negative impacts on plant performance, yield and quality of grains compared to old cultivar.
اظهر المزيد [+] اقل [-]Photosynthetic traits of Siebold's beech and oak saplings grown under free air ozone exposure in northern Japan
2013
Watanabe, Makoto | Hoshika, Yasutomo | Inada, Naoki | Wang, Xiaona | Mao, Qiaozhi | Koike, Takayoshi
We set up a free-air ozone (O3) exposure system for determining the photosynthetic responses of Siebold's beech (Fagus crenata) and oak (Quercus mongolica var. crispula) to O3 under field conditions. Ten-year-old saplings of beech and oak were exposed to an elevated O3 concentration (60 nmol mol−1) during daytime from 6 August to 11 November 2011. Ozone significantly reduced the net photosynthetic rate in leaves of both species in October, by 46% for beech and 15% for oak. In beech there were significant decreases in maximum rate of carboxylation, maximum rate of electron transport in photosynthesis, nitrogen content and photosynthetic nitrogen use efficiency, but not in oak. Stomatal limitation of photosynthesis was unaffected by O3. We therefore concluded photosynthesis in beech is more sensitive to O3 than that in oak, and the O3-induced reduction of photosynthetic activity in beech was due not to stomatal closure, but to biochemical limitation.
اظهر المزيد [+] اقل [-]High nitrogen and elevated [CO₂] effects on the growth, defense and photosynthetic performance of two eucalypt species
2012
Novriyanti, Eka | Watanabe, Makoto | Kitao, Mitsutoshi | Utsugi, Hajime | Uemura, Akira | Koike, Takayoshi
Atmospheric nitrogen deposition and [CO₂] are increasing and represent environmental problems. Planting fast-growing species is prospering to moderate these environmental impacts by fixing CO₂. Therefore, we examined the responses of growth, photosynthesis, and defense chemical in leaves of Eucalyptus urophylla (U) and the hybrid of E. deglupta × E. camadulensis (H) to different CO₂ and nitrogen levels. High nitrogen load significantly increased plant growth, leaf N, net photosynthetic rate (Agᵣₒwₜₕ), and photosynthetic water use efficiency (WUE). High CO₂ significantly increased Agᵣₒwₜₕ, photosynthetic nitrogen use efficiency (PNUE) and WUE. Secondary metabolite (SM, i.e. total phenolics and condensed tannin) was specifically altered; as SM of U increased by high N load but not by elevated [CO₂], and vice versa for SM of H.
اظهر المزيد [+] اقل [-]Temporal and spatial variations in nitrogen use efficiency of crop production in China
2022
Yan, Xiaoyuan | Xia, Longlong | Ti, Chaopu
The low value of nitrogen use efficiency (NUE) (around 30%) of crop production in China highlights the necessity to adopt reasonable N managements in national scale. After the implementation of ‘National Soil Testing and Formulated Fertilization’ program in 2005, many field experiments have reported an increase of NUE for crop productions in China. This has prompted discussion regarding the extent to which NUE in crop production has been improved. Here, we analyzed the temporal and spatial changes in NUE (crop N uptake/total N input) and cumulative synthetic and non-synthetic N fertilizer recovery efficiency of crop production in China during 1980–2014, and evaluated the relationship between NUE and economic growth (purchasing power parity, PPP) at national and provincial scale. The results showed that the overall NUE of crop production in China clearly increased from 35 to 42% during 2003–2014, and an increase in NUE was further evidenced by increases in cumulative recovery efficiency of both synthetic and non-synthetic N fertilizer. The relationship between NUE and PPP can be described by an environmental Kuznets curve at the national scale, with NUE first decreasing then increasing with PPP. However, this relationship exhibited large spatial variation: 1) In economically developed (e.g., Guangdong and Zhejiang) and undeveloped provinces (e.g., Yunnan and Guizhou), NUE generally decreased and then remained at low levels (20–35%) as PPP increased. 2) In major agricultural provinces with high (e.g., Shandong and Jiangsu) or intermediate levels (e.g., Hunan and Hebei) of economic development, a pronounced increasing trend in NUE with PPP was observed. These results highlight the necessity of developing region-oriented N management strategies to further increase the NUE of crop production in China, particularly in the economically developed and undeveloped provinces.
اظهر المزيد [+] اقل [-]