خيارات البحث
النتائج 1 - 10 من 16
Les espaces périurbains : entre pollution des villes et pollution des champs aux échelles régionale et locale
2016
Stella, Patrick | Bedos, Carole | Génermont, Sophie, | Loubet, Benjamin | Personne, Erwan | Petit, Caroline, | Saint-Jean, Sébastien
Les territoires périurbains, zones de transition entre les zones urbaines et rurales, sont soumis à de nombreuses pollutions à la fois gazeuses et particulaires. Ces pollutions proviennent de sources locales comme les activités résidentielles, le trafic routier et les activités agricoles, mais également de sources régionales issues des activités urbaines et des émissions des zones (pseudo-)naturelles adjacentes. Cet article présente une synthèse des différentes sources de pollution affectant la qualité de l’air en milieu périurbain. Il est évident que les pollutions purement anthropiques ne peuvent être dissociées de celles issues du fonctionnement des écosystèmes (pseudo-)naturels dans ces espaces. Enfin, les enjeux vis-à-vis de l’agriculture périurbaine, fortement présente et en développement du fait d’une volonté de consommer des productions locales, sont discutés. | Periurban areas, zone of transition between urban and rural areas, are submitted to several sources of pollution, both gaseous and particulate. These pollutions originate from local sources such as residential sector, traffic road and agricultural activities, but also from regional ones from adjacent urban and (pseudo-)natural areas. This paper presents a synthesis of the different sources affecting air quality in periurban areas. It is clear that pollutions from anthropogenic activities cannot be fully dissociated to those from (pseudo-)natural ecosystem functioning in these areas. Finally, the atmospheric pollution issues are discussed in emphasis with periurban agriculture, already present and under development in these areas due to the development of short food supply chains and local food consumptions.
اظهر المزيد [+] اقل [-]Predicting the global environmental distribution of plastic polymers
2022
Hoseini, Maryam | Bond, Tom
This study represents the first quantitative global prediction of the mass distribution of six widespread polymers, plus plastic fibers and rubber across four environmental compartments and 11 sub-compartments. The approach used probabilistic material flow analysis for 2015, with model input values and transfer coefficients between compartments taken from literature. We estimated that 3.2 ± 1.8 Mt/year of polyethylene, 1.3 ± 0.8 Mt/year of polypropylene, 0.5 ± 0.3 Mt/year of polystyrene, 0.3 ± 0.15 Mt/year of polyvinyl chloride, 1.6 ± 0.9 Mt/year of polyethylene terephthalate and 2.4 ± 1.2 Mt/year of plastic fibers enter the environment. Combining all plastic, including rubber, 4.9 ± 1.3, 4.8 ± 1.9 and 1.8 ± 1.2 Mt/year accumulated in the soil, ocean, and freshwater, respectively. Urban soils and ocean shorelines were predicted as hotspots for plastic accumulation, accounting for 33% and 25% of total plastic, respectively. The floor of freshwater systems and the ocean were predicted as hotspots for high density plastic such as polyethylene terephthalate, polyvinyl chloride and plastic fibers. Furthermore, 59% of environmental rubber was predicted to accumulate in soil. The findings of this study provide baseline data for quantifying plastic transport and accumulation, which can inform future ecotoxicity studies and risk assessments, as well as targeting efforts to mitigate plastic pollution.
اظهر المزيد [+] اقل [-]Are we underestimating microplastic abundance in the marine environment? A comparison of microplastic capture with nets of different mesh-size
2020
Lindeque, Penelope K. | Cole, Matthew | Coppock, Rachel L. | Lewis, Ceri N. | Miller, Rachael Z. | Watts, Andrew J.R. | Wilson-McNeal, Alice | Wright, Stephanie L. | Galloway, Tamara S.
Microplastic debris is ubiquitous and yet sampling, classifying and enumerating this prolific pollutant in marine waters has proven challenging. Typically, waterborne microplastic sampling is undertaken using nets with a 333 μm mesh, which cannot account for smaller debris. In this study, we provide an estimate of the extent to which microplastic concentrations are underestimated with traditional sampling. Our efforts focus on coastal waters, where microplastics are predicted to have the greatest influence on marine life, on both sides of the North Atlantic Ocean. Microplastic debris was collected via surface trawls using 100, 333 and 500 μm nets. Our findings show that sampling using nets with a 100 μm mesh resulted in the collection of 2.5-fold and 10-fold greater microplastic concentrations compared with using 333 and 500 μm meshes respectively (P < 0.01). Based on the relationship between microplastic concentrations identified and extrapolation of our data using a power law, we estimate that microplastic concentrations could exceed 3700 microplastics m⁻³ if a net with a 1 μm mesh size is used. We further identified that use of finer nets resulted in the collection of significantly thinner and shorter microplastic fibres (P < 0.05). These results elucidate that estimates of marine microplastic concentrations could currently be underestimated.
اظهر المزيد [+] اقل [-]Plastics in the Anthropocene: A multifaceted approach to marine pollution management
2023
Rangel-buitrago, Nelson | Neal, William J. | Galgani, Francois
The Anthropocene, defined by human-induced environmental transformations, presents a critical challenge: plastic pollution. This complex problem, particularly prominent in coastal and marine environments, requires integrated and adaptive responses. This opinion paper examines global efforts across policy interventions, scientific innovations, and public education, highlighting both advancements and hurdles in managing this problem. These include enforcement limitations in policy implementation, scalability and cost issues in scientific innovations, and challenges in effecting large-scale behavioral change through public education. The complexities inherent in managing plastic litter in coastal and marine environments are further discussed, emphasizing the necessity for an integrated approach. This approach involves interdisciplinary collaboration, adaptive management, stakeholder engagement, policy integration, sustainable financing, resilience building, capacity enhancement, technological innovation, policy reform, ecosystem-based management, disaster risk reduction, and advocacy. The management of plastic pollution in the Anthropocene requires strategic planning, innovative thinking, and unified global efforts, ultimately providing an opportunity to redefine our relationship with the planet and steer toward a more sustainable future.
اظهر المزيد [+] اقل [-]How can ports act to reduce underwater noise from shipping? Identifying effective management frameworks
2022
Virto, Laura Recuero | Dumez, Hervé | Romero, Carlos | Bailly, Denis
This paper aims to find mechanisms to align commercial interests with underwater noise reductions from commercial shipping. Through a survey and a series of interviews with representative stakeholders, we find that while acknowledging the wide variations in ports' specificities, port actions could support the reduction in underwater noise emissions from commercial shipping through changes in hull, propeller and engine design, and through operational measures associated with reduced speed, change of route and travel in convoy. Though the impact of underwater noise emissions on marine fauna is increasingly shown to be serious and wide-spread, there is uncertainty in the mechanisms, the contexts, and the levels which should lead to action, requiring precautionary management. Vessels owners are already dealing with significant investment and operating costs to comply with fuel, ballast water, NOx and CO2 requirements. To be successful, underwater noise programs should align with these factors. Based on a multiple criteria decision making (MCDM) approach, we find a set of compromise solutions for a wide range of stakeholders. Ports could propose actions such as discounted port fees and reduced ship waiting times at ports, both depending on underwater noise performance. Cooperation between ports to scale up actions through environmental indexes and classification societies' notations, and integration with other ports' actions could help support this. However, few vessels know their underwater noise baseline as there are very few hydrophone stations, and measurement methodologies are not standardized. Costs increase and availability decreases dramatically if the vessel buyer wants to improve the noise profile. Local demands regarding airborne noise close to airports boosted global pressure on the aviation industry to adopt existing quieting technology. This experience of the aviation noise control could inform the underwater noise process.
اظهر المزيد [+] اقل [-]Rapid temporal decline of mercury in Greenland halibut (Reinhardtius hippoglossoides)
2021
Bank, Michael S. | Frantzen, Sylvia | Duinker, Arne | Amouroux, David | Tessier, Emmanuel | Nedreaas, Kjell | Maage, Amund | Nilsen, Bente M.
Mercury (Hg) pollution in the ocean is an issue of global concern, however bioaccumulation regimes of this ubiquitous pollutant in marine apex predators have important knowledge gaps. Our fish length and stable isotope (δ¹⁵N and δ¹³C) normalized data of Greenland halibut (GH) (Reinhardtius hippoglossoides) showed that Hg bioaccumulation in fillet tissue decreased by ~35–50 %, over a ten-year period from 2006 to 2015 (n = 7 individual sampling years). Hg was predominantly in the methylmercury form (>77 %). Results from a Bayesian information theoretic model showed that GH Hg concentrations decreased with time and its associated declines in Hg air emissions, estimated trophic position, and a potentially lower degree of demersal prey use as indicated by temporal trend shifts in nitrogen (δ¹⁵N) and carbon (δ¹³C) stable isotope values. GH trophic shifts accounted for about one third of the observed temporal reduction in Hg. Our study demonstrates the importance of simultaneously considering Hg emissions, food web dynamics and trophic shifts as important drivers of Hg bioaccumulation in a marine, deep water fish species and highlights the effectiveness of Hg regulations on ocean apex predator Hg concentrations and overall seafood safety.
اظهر المزيد [+] اقل [-]PBDEs in the marine environment: Sources, pathways and the role of microplastics
2022
Turner, Andrew
Brominated flame retardants (BFRs) are an important group of additives in plastics that increase resistance to ignition and slow down the rate of burning. Because of concerns about their environmental and human health impacts, however, some of the most widely employed BFRs, including hexabromocyclododecane (HBCD) and commercial mixtures of penta-, octa- and deca- (poly)bromodiphenyl ethers (PBDEs), have been restricted or phased out. In this review, the oceanic sources and pathways of PBDEs, the most widely used BFRs, are evaluated and quantified, with particular focus on emissions due to migration from plastics into the atmosphere versus emissions associated with the input of retarded or contaminated plastics themselves. Calculations based on available measurements of PBDEs in the environment suggest that 3.5 and 135 tonnes of PBDEs are annually deposited in the ocean when scavenged by aerosols and through air-water gas exchange, respectively, with rivers contributing a further ∼40 tonnes. Calculations based on PBDE migration from plastic products in use or awaiting or undergoing disposal yield similar net inputs to the ocean but indicate a relatively rapid decline over the next two decades in association with the reduction in the production and recycling of these chemicals. Estimates associated with the input of PBDEs to the ocean when “bound” to marine plastics and microplastics range from about 360 to 950 tonnes per year based on the annual production of plastics and PBDEs over the past decade, and from about 20 to 50 tonnes per annum based on the abundance and distribution of PBDEs in marine plastic litter. Because of the persistence and pervasiveness of plastics in the ocean and diffusion coefficients for PBDEs on the order of 10⁻²⁰ to 10⁻²⁷ m² s⁻¹, microplastics are likely to act as a long-term source of these chemicals though gradual migration. Locally, however, and more important from an ecotoxicological perspective, PBDE migration may be significantly enhanced when physically and chemically weathered microplastics are exposed to the oily digestive fluids conditions of fish and seabirds.
اظهر المزيد [+] اقل [-]Marine debris in Malaysia: A review on the pollution intensity and mitigating measures
2021
Fauziah, Shahul Hamid | Rizman-Idid, Mohammed | Cheah, Wee | Loh, Kar-Hoe | Sharma, Sahadev | M.R, NoorMaiza | Bordt, Michael | Praphotjanaporn, Teerapong | Azizan Abu Samah, | Sabaruddin, Johan Shamsuddin bin | George, Mary
The launch of Roadmap towards Zero Single-use Plastics in 2018 demands baseline data on the management of marine debris in Malaysia. In 2021, Malaysia is placed 28th top plastic polluter in the world with plastic consumption at 56 kg/capita/year, therefore data on mismanaged plastic is imperative. This paper reviews the abundance and distribution of marine debris in selected Malaysian beaches over the last decade (2010–2020) and discusses issue on its management. Plastic debris on beaches in Malaysia, was reported to range from 64 items/m², to as high as 1930 items/m², contributing 30–45% of total waste collected. Plastics film was the most dominant, mainly originated from packaging materials. Therefore, appropriate action including improved marine waste management system is crucial to tackle the problem, together with effective governance mechanisms. Various suggestions were proposed based on the statistical-environmental data to reduce the occurrence of marine debris in the country.
اظهر المزيد [+] اقل [-]Prevalence of marine debris in marine birds from the North Atlantic
2014
Provencher, Jennifer F. | Bond, Alexander L. | Hedd, April | Montevecchi, William A. | Muzaffar, Sabir Bin | Courchesne, Sarah J. | Gilchrist, H Grant | Jamieson, Sarah E. | Merkel, Flemming R. | Falk, Knud | Durinck, Jan | Mallory, Mark L.
Marine birds have been found to ingest plastic debris in many of the world’s oceans. Plastic accumulation data from necropsies findings and regurgitation studies are presented on 13 species of marine birds in the North Atlantic, from Georgia, USA to Nunavut, Canada and east to southwest Greenland and the Norwegian Sea. Of the species examined, the two surface plungers (great shearwaters Puffinus gravis; northern fulmars Fulmarus glacialis) had the highest prevalence of ingested plastic (71% and 51%, respectively). Great shearwaters also had the most pieces of plastics in their stomachs, with some individuals containing as many of 36 items. Seven species contained no evidence of plastic debris. Reporting of baseline data as done here is needed to ensure that data are available for marine birds over time and space scales in which we see changes in historical debris patterns in marine environments (i.e. decades) and among oceanographic regions.
اظهر المزيد [+] اقل [-]Algal bioassays detect modeled loading of wastewater-derived nitrogen in coastal waters of OʻAHU, HAWAIʻI
2020
Amato, Daniel W. | Whittier, Robert B. | Dulai, Henrietta | Smith, Celia M.
Previous studies indicate coastlines are at risk of wastewater contamination from injection wells, cesspools, and septic systems. In this study, common marine algae were used to ground-truth modeled loading of wastewater-derived N to coastlines of Oʻahu, Hawaiʻi. Macroalgae were collected and/or deployed at 118 sites and analyzed for tissue δ¹⁵N and N %. Wastewater source locations were used to estimate wastewater-derived N in groundwater with the modeling software MT3DMS/MODFLOW. Algal bioassays identified six coastal regions subjected to elevated wastewater-derived N loading. In a case study, submarine groundwater discharge (estimated by ²²²Rn mass balance) was related to wastewater loading from onsite sewage disposal systems (OSDS) and municipal wastewater injection wells in Waimānalo. The highest ²²²Rn-derived SGD rate and N flux were 21.4 m³/m/d and 62.6 g/m/d, respectively. The results of this study suggest that OSDS and injection wells discharge substantial volumes of wastewater and N across broad regions of coastal Oʻahu.
اظهر المزيد [+] اقل [-]