خيارات البحث
النتائج 1 - 10 من 101
Factors affecting farmers’ use of organic and inorganic fertilizers in South Asia
2021
Aryal, J.P. | Sapkota, T. | Krupnik, T.J. | Rahut, D.B. | Jat, M.L. | Stirling, C.
Fertilizer, though one of the most essential inputs for increasing agricultural production, is a leading cause of nitrous oxide emissions from agriculture, contributing significantly to global warming. Therefore, understanding factors affecting farmers’ use of fertilizers is crucial to develop strategies to improve its efficient use and to minimize its negative impacts. Using data from 2528 households across the Indo-Gangetic Plains in India, Nepal, and Bangladesh, this study examines the factors affecting farmers’ use of organic and inorganic fertilizers for the two most important cereal crops – rice and wheat. Together, these crops provide the bulk of calories consumed in the region. As nitrogen (N) fertilizer is the major source of global warming and other environmental effects, we also examine the factors contributing to its overuse. We applied multiple regression models to understand the factors influencing the use of inorganic fertilizer, Heckman models to understand the likelihood and intensity of organic fertilizer (manure) use, and a probit model to examine the over-use of N fertilizer. Our results indicate that various socio-economic and geographical factors influence the use of organic and inorganic fertilizers in rice and wheat. Across the study sites, N fertilizer over-use is the highest in Haryana (India) and the lowest in Nepal. Across all locations, farmers reported a decline in manure application, concomitant with a lack of awareness of the principles of appropriate fertilizer management that can limit environmental externalities. Educational programs highlighting measures to improving nutrient-use-efficiency and reducing the negative externalities of N fertilizer over-use are proposed to address these problems. | 51480-51496
اظهر المزيد [+] اقل [-]Organic fertilizer activates soil beneficial microorganisms to promote strawberry growth and soil health after fumigation
2022
Li, Qingjie | Zhang, Daqi | Song, Zhaoxin | Ren, Lirui | Jin, Xi | Fang, Wensheng | Yan, Dongdong | Li, Yuan | Wang, Qiuxia | Cao, Aocheng
Soil fumigants aim to control soil-borne diseases below levels that affect economic crop production, but their use also reduces the abundance of beneficial microorganisms. Previous studies have shown that adding various types of fertilizers to soil after fumigation can reshape the soil microbial community and regulate crop growth. We fumigated soil with dazomet (DZ) that had been cropped continuously for more than 20 years. After fumigation we applied silicon fertilizer, potassium humate organic fertilizer, Bacillus microbial fertilizer or a mixture of the last two. We studied the effects of different fertilizers treatments on the soil's physicochemical properties, enzyme activities, key soil pathogens and beneficial microbes. We found that fertilizers applied after fumigation promoted soil beneficial microorganisms (such as Fimicutes, Chloroflexi, Bacillus and Actinomadura) restoration; increased Fusarium and Phytophthora pathogen mortality, the content of ammonium nitrogen, sucrase enzyme activity; and increased strawberry fruit yield. A significant increase in strawberry yield was positively correlated with increases in beneficial microorganisms such as Gemmatimonadota, Firmicutes, Bacillus and Flavisolibacter. We concluded that organic fertilizer applied after fumigation significantly increased the number of beneficial microorganisms, improved the physicochemical properties of the soil, increased soil enzyme activities, inhibited the growth of soil pathogens to increase strawberry fruit yield. In summary, organic fertilizer activated soil beneficial microorganisms after soil fumigation, promoted soil health, and increased strawberry fruit yield.
اظهر المزيد [+] اقل [-]Accumulation of phthalates under high versus low nitrogen addition in a soil-plant system with sludge organic fertilizers instead of chemical fertilizers
2021
Hui, Kunlong | Tang, Jun | Cui, Yini | Xi, Beidou | Tan, Wenbing
Nitrogen is the main nutrient in soil. The long-term addition of N leads to changes in the soil dissolved organic matter (DOM) and other quality indicators, which affects the adsorption and accumulation of organic pollutants. The use of organic fertilizer is important for the development of green agriculture. However, organic fertilizers (especially sludge organic fertilizers (SOFs) contain phthalates (PAEs) that may accumulate in the soil and result in environmental contamination. How this accumulation response varies with the magnitude of long-term N addition, especially in different soil layer profiles, remains unclear. Here, changes in the content of PAEs in the soil–plant system without and after SOFs application were studied through field experiments in soils with different N addition backgrounds (CK, N1, N3 (0, 100, 300 kg N ha⁻¹ yr⁻¹ respectively)). Our results showed that the application of SOFs increase the accumulation of PAEs in soil profiles and plant systems, increasing human health risks. The content of Σ₅PAEs in the topsoil increased from 0.96 ± 0.10 to 1.86 ± 0.09 mg kg⁻¹. Moreover, under a high N addition background and SOFs application, the characteristics of soil DOM change, and the accumulation of PAEs in soil was nearly 30% higher compared with the low N group. Some suggestions such as removing PAEs from SOFs during preparation, conducting soil surveys before applying PAEs, and using soil amendments, which are provided for optimizing the trialability and environmental safety of SOFs application.
اظهر المزيد [+] اقل [-]Integrated farming system producing zero emissions and sustainable livelihood for small-scale cattle farms: Case study in the Mekong Delta, Vietnam
2020
This study proposes an integrated cattle breeding and cultivation system that provides zero emission and sustainable livelihood for the community in rural areas. The proposed integrated farming system improves agricultural productivity and environmental and sanitation conditions, minimizes the amount of waste, and increases the family income up to 41.55%. Several waste types can be recycled and transformed into valuable products, such as energy for cooking, organic fertilizer for crops, and cattle feed for breeding. Wastewater effluent from the biogas tank can be treated by biochar and results show that it then meets the standards for irrigation purposes. Also, the waste flow from cattle breeding supplies enough nutrients to cultivate plants, and the plants grown supply are adequate food for the 30 cows living on the farm. This research shows that the use of an integrated farming system could achieve zero-emission goal. Thereby, it provides a sustainable livelihood for cattle breeding family farms. The proposed integrated cattle breeding and cultivation system improves agricultural productivity, environmental and increases the farmer income up to 41.55%.
اظهر المزيد [+] اقل [-]Reduced phytotoxicity of nonylphenol on tomato (Solanum lycopersicum L.) plants by earthworm casts
2020
Jiang, Lei | Wang, Bingjie | Liang, Jingqi | Pan, Bo | Yang, Yi | Lin, Yong
Concentrations as high as thousands of milligrams per kilogram (dry weight) of nonylphenol (NP), an endocrine-disrupting chemical of great concern, have been reported in soil. Soil is considered one of the primary pathways for exposure of crop plants to NP. However, there have been few studies on the toxicity of soil NP to crop plants, especially with comprehensive consideration of the application of organic fertiliser which is a common agricultural practice. In this study, tomato plants were grown in soils treated with NP in the presence and/or absence of earthworm casts (EWCs). After four weeks, we tested the physiological and biochemical responses (accumulative levels of hydrogen peroxide (H₂O₂) and superoxide anion radicals (O₂-·), total chlorophyll content, degree of membrane lipid peroxidation, activities of defence-related enzymes, and level of DNA damage) and the changes in plant growth (elongation and biomass). The growth inhibition, reactive oxygen species (H₂O₂ and O₂-·) accumulation, decrease in chlorophyll content, increase in activity of defence-related enzymes (including superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, glutathione S-transferase and glutathione reductase), enhancement of membrane lipid peroxidation, and DNA damage in NP-treated seedlings were clearly reversed by the intervention of EWCs. In particular, the suppressed elongation, biomass, and chlorophyll content in tomato plants exposed to NP alone were significantly restored by EWCs to even greater levels than those of the undisturbed control. In other words, EWCs could efficiently invigorate the photosynthesis of crops via up-regulating the chlorophyll content, thereby overwhelming the NP stress on plant growth. Accordingly, except for reducing the bioavailability of soil NP as reported in our previous study, EWCs could also help crop plants to cope with NP stress by strengthening their stress resistance ability. Our findings are of practical significance for the formulation of strategies to relieve the negative effects of soil NP on crop growth.
اظهر المزيد [+] اقل [-]Antibiotics in soil and water in China–a systematic review and source analysis
2020
Lyu, Jia | Yang, Linsheng | Zhang, Lan | Ye, Bixiong | Wang, Li
With the high production and consumption of antibiotics in recent years due to increasing economic development and improving population health, China is facing serious antibiotic pollution in the environment, and it is becoming a significant threat to ecology and human health. This study explores the spatial distribution patterns of 65 antibiotics in soil, surface water and coastal water based on a systematic review. Potential emission sources of antibiotics are also analyzed using data extracted from the reviewed literature. The results suggest that China has very high antibiotic detection rates of 100%, 98.0% and 96.4% for soil, surface water and coastal water, respectively. Regions with high antibiotic levels are mainly located in Bohai Bay, including the Beijing‒Tianjin‒Hebei region, Liaoning and Shandong Provinces, and Yangtze River. Tetracyclines (TCs) and quinolones (QNs) are the dominant antibiotics observed in soil and are mainly attributed to the use of manure as fertilizer and the reuse of domestic wastewater. Sulfonamides (SAs), macrolides (MLs), TCs and QNs are the dominant antibiotics observed in surface water and are mainly attributed to aquaculture and the emission of domestic sewage. QNs are the dominant antibiotics observed in coastal water and are mainly attributed to marine cultivation. The detection frequencies and concentrations of TCs, QNs, SAs and MLs in both soil and water are much higher than those in other developed countries. Suggestions including restricting antibiotic usages in livestock farming and aquaculture, innovation of wastewater treatment technology to improve antibiotic removal rate, and establishing guidelines on antibiotic concentration for wastewater discharge and organic fertilizer are provided.
اظهر المزيد [+] اقل [-]Effect of long-term fertilization on humic redox mediators in multiple microbial redox reactions
2018
Guo, Peng | Zhang, Chunfang | Wang, Yi | Yu, Xinwei | Zhang, Zhichao | Zhang, Dongdong
This study investigated the effects of different long-term fertilizations on humic substances (HSs), humic acids (HAs) and humins, functioning as redox mediators for various microbial redox biotransformations, including 2,2′,4,4′,5,5′- hexachlorobiphenyl (PCB₁₅₃) dechlorination, dissimilatory iron reduction, and nitrate reduction, and their electron-mediating natures. The redox activity of HSs for various microbial redox metabolisms was substantially enhanced by long-term application of organic fertilizer (pig manure). As a redox mediator, only humin extracted from soils with organic fertilizer amendment (OF-HM) maintained microbial PCB₁₅₃ dechlorination activity (1.03 μM PCB₁₅₃ removal), and corresponding HA (OF-HA) most effectively enhanced iron reduction and nitrate reduction by Shewanella putrefaciens. Electrochemical analysis confirmed the enhancement of their electron transfer capacity and redox properties. Fourier transform infrared analysis showed that C=C and C=O bonds, and carboxylic or phenolic groups in HSs might be the redox functional groups affected by fertilization. This research enhances our understanding of the influence of anthropogenic fertility on the biogeochemical cycling of elements and in situ remediation ability in agroecosystems through microorganisms’ metabolisms.
اظهر المزيد [+] اقل [-]Tillage, crop rotation, and organic amendment effect on changes in soil organic matter
2002
Rickman, R. | Douglas, C. | Albrecht, S. | Berc, J.
Carbon sequestration in agricultural soils is controlled by the balance of added organic residues and microbial oxidation of both residues and native organic matter (OM) as moderated by management and tillage. The PC-based model CQESTR predicts decomposition of residues, organic amendments and soil OM, based on cropping practices. CQESTR uses RUSLE (Revised Universal Soil Loss Equation) crop rotation and management practice, crop production, and operation databases. These data are supplemented with residue nitrogen and soil OM, bulk density, and layer thickness. CQESTR was calibrated with soil carbon data from 70-year-long experiments at the Research Center at Pendleton, OR. The calibrated model provides estimates with a 95% confidence interval of 0.33% OM. Validation at 11 independent sites resulted in a matching of observed with calculated OM with a 95% confidence interval of 0.55% OM. A 12th site, with a history of severe erosion, provided a poor match.
اظهر المزيد [+] اقل [-]Effects of soil protists on the antibiotic resistome under long term fertilization
2022
Li, Hong-Zhe | Zhu, Dong | Sun, An-Qi | Qin, Yi-Fei | Lindhardt, Jonathan Hessner | Cui, Li
Soil protists are key in regulating soil microbial communities. However, our understanding on the role of soil protists in shaping antibiotic resistome is limited. Here, we considered the diversity and composition of bacteria, fungi and protists in arable soils collected from a long-term field experiment with multiple fertilization treatments. We explored the effects of soil protists on antibiotic resistome using high-throughput qPCR. Our results showed that long term fertilization had stronger effect on the composition of protists than those of bacteria and fungi. The detected number and relative abundance of antibiotic resistance genes (ARGs) were elevated in soils amended with organic fertilizer. Co-occurrence network analysis revealed that changes in protists may contribute to the changes in ARGs composition, and the application of different fertilizers altered the communities of protistan consumers, suggesting that effects of protistan communities on ARGs might be altered by the top-down impact on bacterial composition. This study demonstrates soil protists as promising agents in monitoring and regulating ecological risk of antibiotic resistome associated with organic fertilizers.
اظهر المزيد [+] اقل [-]Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China’s vegetable systems: A meta-analysis
2021
Liu, Bin | Wang, Xiaozhong | Ma, Lin | Chadwick, Dave | Chen, Xinping
The combined application of organic and synthetic nitrogen (N) fertilizers is being widely recommended in China’s vegetable systems to reduce reliance on synthetic N fertilizer. However, the effect of substituting synthetic fertilizer with organic fertilizer on vegetable productivity (yield, N uptake and nitrogen use efficiency) and reactive nitrogen (Nr) losses (N₂O emission, N leaching and NH₃ volatilization) remains unclear. A meta-analysis was performed using peer-reviewed papers published from 2000 to 2019 to comprehensively assess the effects of combined application of organic and synthetic N fertilizers. The results indicate that overall, the vegetable yield, N₂O emission and NH₃ volatilization were not significantly changed, whereas N leaching was reduced by 44.6% and soil organic carbon (SOC) concentration increased by 12.5% compared to synthetic N fertilizer alone. Specifically, when synthetic N substitution rates (SRs) were ≤70%, vegetable yields and SOC concentration were increased by 5.5%–5.6% and 13.1–18.0%, and N leaching was reduced by 41.6%–48.1%. At the high substitution rate (SR>70%), vegetable yield was reduced by 13.6%, N₂O emission was reduced by 14.3%, and SOC concentration increased by 16.4%. Mixed animal-plant sources of organic N preferentially increased vegetable yield and SOC concentration, and reduced N₂O emission and N leaching compared with single sources of organic-N. Greenhouse gas (GHG) emission was decreased by 28.4%–34.9% by combined applications of organic and synthetic N sources, relative to synthetic N fertilizer alone. We conclude that appropriate rates (SR ≤ 70%) of combined applications of organic and synthetic N fertilizers could improve vegetable yields, decrease Nr and GHG emission, and facilitate sustainable development of coupled vegetable-livestock systems.
اظهر المزيد [+] اقل [-]