خيارات البحث
النتائج 1 - 7 من 7
Chromium in plant growth and development: Toxicity, tolerance and hormesis
2022
López-Bucio, Jesús Salvador | Ravelo-Ortega, Gustavo | López-Bucio, José
Research over the last three decades showed that chromium, particularly the oxyanion chromate Cr(VI) behaves as a toxic environmental pollutant that strongly damages plants due to oxidative stress, disruption of nutrient uptake, photosynthesis and metabolism, and ultimately, represses growth and development. However, mild Cr(VI) concentrations promote growth, induce adventitious root formation, reinforce the root cap, and produce twin roots from single root meristems under conditions that compromise cell viability, indicating its important role as a driver for root organogenesis. In recent years, considerable advance has been made towards deciphering the molecular mechanisms for root sensing of chromate, including the identification of regulatory proteins such as SOLITARY ROOT and MEDIATOR 18 that orchestrate the multilevel dynamics of the oxyanion. Cr(VI) decreases the expression of several glutamate receptors, whereas amino acids such as glutamate, cysteine and proline confer protection to plants from hexavalent chromium stress. The crosstalk between plant hormones, including auxin, ethylene, and jasmonic acid enables tissues to balance growth and defense under Cr(VI)-induced oxidative damage, which may be useful to better adapt crops to biotic and abiotic challenges. The highly contrasting responses of plants manifested at the transcriptional and translational levels depend on the concentration of chromate in the media, and fit well with the concept of hormesis, an adaptive mechanism that primes plants for resistance to environmental challenges, toxins or pollutants. Here, we review the contrasting facets of Cr(VI) in plants including the cellular, hormonal and molecular aspects that mechanistically separate its toxic effects from biostimulant outputs.
اظهر المزيد [+] اقل [-]Evaluation of acute toxicity and teratogenic effects of disinfectants by Daphnia magna embryo assay
2012
Ton, Shan-Shin | Zhang, Shixian | Hsu, Ling-Yin | Wang, Meng-Hsuan | Wang, Kai-Sung
Three common disinfectants were selected in this study to investigate their toxicity to Daphnia magna. The methods used in this study included the traditional acute toxicity test, new embryo toxicity test, and teratogenic test. The study concluded that the acute toxicity of the three disinfectants to young daphnids and embryos were hypochlorite > formaldehyde > m-cresol. The effects on growth mostly occurred in the late stages of organogenesis. Of the organs, the Malpighian tube was the most sensitive to disinfectants during embryonic organogenesis. After exposure of the disinfectants to sunlight for 4 h, acute toxicity and teratogenic effects of hypochlorite on young daphnids decreased by 30% and 71%, respectively, while those of formaldehyde decreased by 35% and 49%, respectively. In addition, comparing toxic endpoints of the three disinfectants with and without sunlight exposure, the embryo tests were equally sensitive to the three-week reproduction test in this study.
اظهر المزيد [+] اقل [-]Embryonic exposures to perfluorooctanesulfonic acid (PFOS) disrupt pancreatic organogenesis in the zebrafish, Danio rerio
2017
Sant, Karilyn E. | Jacobs, Haydee M. | Borofski, Katrina A. | Moss, Jennifer B. | Timme-Laragy, Alicia R.
Perfluorooctanesulfonic acid (PFOS) is a ubiquitous environmental contaminant, previously utilized as a non-stick application for consumer products and firefighting foam. It can cross the placenta, and has been repeatedly associated with increased risk for diabetes in epidemiological studies. Here, we sought to establish the hazard posed by embryonic PFOS exposures on the developing pancreas in a model vertebrate embryo, and develop criteria for an adverse outcome pathway (AOP) framework to study the developmental origins of metabolic dysfunction. Zebrafish (Danio rerio) embryos were exposed to 16, 32, or 64 μM PFOS beginning at the mid-blastula transition. We assessed embryo health, size, and islet morphology in Tg(insulin-GFP) embryos at 48, 96 and 168 hpf, and pancreas length in Tg(ptf1a-GFP) embryos at 96 and 168 hpf. QPCR was used to measure gene expression of endocrine and exocrine hormones, digestive peptides, and transcription factors to determine whether these could be used as a predictive measure in an AOP. Embryos exposed to PFOS showed anomalous islet morphology and decreased islet size and pancreas length in a U-shaped dose-response curve, which resemble congenital defects associated with increased risk for diabetes in humans. Expression of genes encoding islet hormones and exocrine digestive peptides followed a similar pattern, as did total larval growth. Our results demonstrate that embryonic PFOS exposures can disrupt pancreatic organogenesis in ways that mimic human congenital defects known to predispose individuals to diabetes; however, future study of the association between these defects and metabolic dysfunction are needed to establish an improved AOP framework.
اظهر المزيد [+] اقل [-]Combined effects of ocean warming and acidification on the larval stages of the European abalone Haliotis tuberculata
2022
Kavousi, Javid | Roussel, Sabine | Martin, Sophie | Gaillard, Fanny | Badou, Aicha | Di Poi, Carole | Huchette, Sylvain | Dubois, Philippe | Auzoux-Bordenave, Stéphanie
This study examined the physiological responses of the larval stages of Haliotis tuberculata, an economically important abalone, to combined temperature (17 °C and 19 °C) and pH (ambient pH and −0.3 units, i.e., +200% increase in seawater acidity) in a full factorial experiment. Tissue organogenesis, shell formation, and shell length significantly declined due to low pH. High temperature significantly increased the proportion of fully shelled larvae at 24 h post-fertilization (hpf), but increased the proportion of unshelled larvae at 72 hpf. Percentage of swimming larvae at 24 hpf, 72 hpf and 96 hpf significantly declined due to high temperature, but not because of low pH. Larval settlement increased under high temperature, but was not affected by low pH. Despite the fact that no interaction between temperature and pH was observed, the results provide additional evidence on the sensitivity of abalone larvae to both low pH and high temperature. This may have negative consequences for the persistence of abalone populations in natural and aquaculture environments in the near future.
اظهر المزيد [+] اقل [-]Studying the effects of profenofos, an endocrine disruptor, on organogenesis of zebrafish
2021
Sultana, Zakia | Khan, Mst Mansura | Mostakim, Golam Mohammod | Moniruzzaman, Md | Rahman, Md Khalilur | Shahjahan, Md | Islam, M Sadiqul
Profenofos is an endocrine-disrupting chemical that can enter into the aquatic ecosystem either through surface runoff or through percolation of a toxicant from the soil. In order to clarify the effect of profenofos on the developmental stages of zebrafish, the embryos were treated with serial dilutions of profenofos (0%, 10%, 25%, and 50% of LC₅₀). Embryos were treated with profenofos for 7 days or until hatching. The toxic endpoints assessed include hatching time, survival, malformation, and heartbeats of the embryos. In a 96-h test on zebrafish embryos, the LC₅₀ of profenofos was 0.057 mg/L. Profenofos considerably lowered survival, increased abnormalities at different ontogenetic stages, and developed malformations of different organs in a concentration-dependent fashion. The identified developmental malformations were fluid accumulation, impaired jaw, short tail, ruptured pectoral and caudal fin, curved body, thin yolk sac tube, and deformed heart. The way of looping arrangement of the heart at the early stage of embryos was significantly influenced by the higher concentration of profenofos. Heartbeat is also reduced significantly in a concentration-dependent fashion. The results show that the zebrafish are susceptible to profenofos even at lower concentrations in the initial stage. Therefore, when used in agricultural areas adjacent to the aquatic environment, endocrine-disrupting chemicals should be used in an appropriate manner.
اظهر المزيد [+] اقل [-]Effects of copper deficiency and copper toxicity on organogenesis and some physiological and biochemical responses of Scots pine (Pinus sylvestris L.) seedlings grown in hydroculture
2016
Ivanov, Yury V. | Kartashov, Alexander V. | Ivanova, Alexandra I. | Savochkin, Yury V. | Kuznetsov, Vladimir V.
The morphological, physiological, and biochemical parameters of 6-week-old seedlings of Scots pine (Pinus sylvestris L.) were studied under deficiency (1.2 nM) and chronic exposure to copper (0.32, 1, 2.5, 5, and 10 μM CuSO₄) in hydroculture. The deposit of copper in the seed allowed the seedlings to develop under copper deficiency without visible disruption of growth. The high sensitivity of Scots pine to the toxic effects of copper was shown, which manifested as a significant inhibition of growth and development. The loss of dominance of the main root and a strong inhibition of lateral root development pointed to a lack of adaptive reorganization of the root system architecture under copper excess. A preferential accumulation of copper in the root and a minor translocation in aerial organs confirmed that Scots pine belongs to a group of plants that exclude copper. Selective impairment in the absorption of manganese was discovered, under both deficiency and excess of copper in the nutrient solution, which was independent of the degree of development of the root system. Following 10 μM CuSO₄ exposure, the absorption of manganese and iron from the nutrient solution was completely suppressed, and the development of seedlings was secured by the stock of these micronutrients in the seed. The absence of signs of oxidative stress in the seedling organs was shown under deficiency and excess of copper, as evidenced by the steady content of malondialdehyde and 4-hydroxyalkenals. Against this background, no changes in total superoxide dismutase activity in the organs of seedlings were revealed, and the increased content of low-molecular-weight antioxidants was observed in the roots under 1 μM and in the needles under 5 μM CuSO₄ exposures.
اظهر المزيد [+] اقل [-]Assessment of the effects of the carbamazepine on the endogenous endocrine system of Daphnia magna
2016
Oropesa, A. L. | Floro, A. M. | Palma, P.
In the present study, the endocrine activity of the antiepileptic pharmaceutical carbamazepine (CBZ) in the crustacean Daphnia magna was assessed. To assess the hormonal activity of the drug, we exposed maternal daphnids and embryos to environmental relevant concentrations of CBZ (ranging from 10 to 200 μg/L) and to mixtures of CBZ with fenoxycarb (FEN; 1 μg/L). Chronic exposure to CBZ significantly decreased the reproductive output and the number of molts of D. magna at 200 μg/L. This compound induced the production of male offspring (12 ± 1.7 %), in a non-concentration-dependent manner, acting as a weak juvenile hormone analog. Results showed that this substance, at tested concentrations, did not antagonize the juvenoid action of FEN. Further, CBZ has shown to be toxic to daphnid embryos through maternal exposure interfering with their normal gastrulation and organogenesis stages but not producing direct embryo toxicity. These findings suggest that CBZ could act as an endocrine disruptor in D. magna as it decreases the reproductive output, interferes with sex determination, and causes development abnormality in offspring. Therefore, CBZ could directly affect the population sustainability.
اظهر المزيد [+] اقل [-]