خيارات البحث
النتائج 1 - 10 من 37
Stereo-selective cardiac toxicity induced by metconazole via oxidative stress and the wnt/β-catenin signaling pathway in zebrafish embryos النص الكامل
2024
Liu, Lulu | Wang, Fengzhong | Zhang, Zhong | Fan, Bei | Luo, Ying | Li, Ling | Zhang, Yifan | Yan, Zhihui | Kong, Zhiqiang | Francis, Frédéric | Li, Minmin
peer reviewed | Metconazole (MEZ), a chiral triazole fungicide, produces enantioselective adverse effects in non-target organisms. Among MEZ's isomers, cis-MEZ displays robust antimicrobial properties. Evaluating MEZ and cis-MEZ's toxicity may mitigate fungicide usage and safeguard non-target organisms. Our study evaluated the toxicity of MEZ and its cis-isomers at concentrations of 0.02, 0.2, 2, and 4 mg L−1. We report stereoselectivity and severe cardiovascular defects in zebrafish, including pericardial oedema, decreased heart rate, increased sinus venous and bulbous arteries distances, intersegmental vessel defects, and altered cardiovascular development genes (hand2, gata4, nkx2.5, tbx5, vmhc, amhc, dll4, vegfaa, and vegfc). Further, MEZ significantly increased oxidative stress and apoptosis in zebrafish, primarily in the cardiac region. Isoquercetin, an antioxidant found in plants, partially mitigates MEZ-induced cardiac defects. Furthermore, MEZ upregulated the Wnt/β-catenin pathway genes (wnt3, β-catenin, axin2, and gsk-3β) and β-catenin protein expression. Inhibitor of Wnt Response-1 (IWR-1) rescued MEZ-induced cardiotoxicity. Our findings highlight oxidative stress, altered cardiovascular development genes, and upregulated Wnt/β-catenin signaling as contributors to cardiovascular toxicity in response to MEZ and cis-MEZ treatments. Importantly, 1R,5S-MEZ exhibited greater cardiotoxicity than 1S,5R-MEZ. Thus, our study provides a comprehensive understanding of cis-MEZ's cardiovascular toxicity in aquatic life. © 2024 Elsevier Ltd
اظهر المزيد [+] اقل [-]Developmental alterations, teratogenic effects, and oxidative disruption induced by ibuprofen, aluminum, and their binary mixture on Danio rerio النص الكامل
2021
Sánchez-Aceves, Livier M | Pérez-Alvarez, Itzayana | Gómez-Oliván, Leobardo Manuel | Islas-Flores, Hariz | Barceló, Damià
Several studies highlighted the ubiquitous presence of ibuprofen and aluminum in the aquatic environment around the world and demonstrated their potential to induce embryotoxic and teratogenic defects on aquatic species individually. Although studies that evaluate developmental alterations induced by mixtures of these pollutants are scarce; and, since environmental contamination presented in the form of a mixture of toxicants with different chemical properties and toxicity mechanisms capable of generating interactions; the objective of this study was to evaluate the developmental defects, teratogenic alterations, and oxidative stress induced by individual forms and the mixture of ibuprofen (IBU) and aluminum (Al) on zebrafish embryos. Oocytes exposed to environmentally relevant concentrations of IBU (0.1–20 μg L-1) and Al (0.01–8 mg L-1) and one binary mixture. The LC50 and EC50 were obtained to calculate the teratogenic index (TI). The IBU LC50, EC50, and TI were 8.06 μg L-1, 2.85 μg L-1 and 2.82. In contrast, Al LC50 was 5.0 mg L-1with an EC50 of 3.58 mg L-1 and TI of 1.39. The main alterations observed for individual compounds were hatching alterations, head malformation, skeletal deformities, hypopigmentation, pericardial edema, and heart rate impairment. The mixture also showed significant delays to embryonic development. Moreover, oxidative stress biomarkers of cellular oxidation and antioxidant defenses at 72 and 96 hpf significantly increased. Results show that environmentally relevant concentrations of ibuprofen (IBU), aluminum (Al), and their mixture promote a series of developmental defects, teratogenic effects, and oxidative disruption on D. rerio embryos, and the interaction of both substances altered the response. In conclusion, morphological and biochemical tests are suitable tools for assessing the health risk of aquatic wildlife by exposure to individual and mixed pollutants in freshwater bodies.
اظهر المزيد [+] اقل [-]Arsenic exposure induces a bimodal toxicity response in zebrafish النص الكامل
2021
Coral, Jason A. | Heaps, Samuel | Glaholt, Stephen P. | Karty, Jonathan A. | Jacobson, Stephen C. | Shaw, Joseph R. | Bondesson, Maria
In toxicology, standard sigmoidal concentration-response curves are used to predict effects concentrations and set chemical regulations. However, current literature also establishes the existence of complex, bimodal concentration-response curves, as is the case for arsenic toxicity. This bimodal response has been observed at the molecular level, but not characterized at the whole organism level. This study investigated the effect of arsenic (sodium arsenite) on post-gastrulated zebrafish embryos and elucidated effects of bimodal concentration-responses on different phenotypic perturbations.Six hour post fertilized (hpf) zebrafish embryos were exposed to arsenic to 96 hpf. Hatching success, mortality, and morphometric endpoints were evaluated both in embryos with chorions and dechorionated embryos. Zebrafish embryos exhibited a bimodal response to arsenic exposure. Concentration-response curves for exposed embryos with intact chorions had an initial peak in mortality (88%) at 1.33 mM arsenic, followed by a decrease in toxicity (~20% mortality) at 1.75 mM, and subsequently peaked to 100% mortality at higher concentrations. To account for the bimodal response, two distinct concentration-response curves were generated with estimated LC10 values (and 95% CI) of 0.462 (0.415, 0.508) mM and 1.69 (1.58, 1.78) mM for the ‘low concentration’ and ‘high concentration’ peaks, respectively. Other phenotypic analyses, including embryo length, yolk and pericardial edema all produced similar concentration-response patterns. Tests with dechorionated embryos also resulted in a bimodal toxicity response but with lower LC10 values of 0.170 (0.120, 0.220) mM and 0.800 (0.60, 0842) mM, respectively. Similarities in bimodal concentration-responses between with-chorion and dechorionated embryos indicate that the observed effect was not caused by the chorion limiting arsenic availability, thus lending support to other studies such as those that hypothesized a conserved bimodal mechanism of arsenic interference with nuclear receptor activation.
اظهر المزيد [+] اقل [-]Exposure to diclofop-methyl induces cardiac developmental toxicity in zebrafish embryos النص الكامل
2020
Cao, Zigang | Huang, Yong | Xiao, Juhua | Cao, Hao | Peng, Yuyang | Chen, Zhiyong | Liu, Fasheng | Wang, Honglei | Liao, Xinjun | Lu, Huiqiang
Diclofop-methyl (DM) is one of the most widely used herbicides in agriculture production and has been frequently detected in both freshwater and environments, even agricultural products. However, the potential toxic effects of DM on organisms and the underlying mechanisms are still poorly understood. In this study, we utilized zebrafish to evaluate the toxicity of DM during the cardiovascular developmental process. Exposure of zebrafish embryos to 0.75, 1.0 and 1.25 mg/L DM induced cardiac defects, such as pericardial edema, slow heart rate and long SV-BA distance but the vascular development in zebrafish larvae was not influenced by DM treatment. The expression of cardiac-related genes were disordered and DM exposure initiated disordering cardiogenesis from the period of precardiac mesoderm formation. Moreover, the apoptosis and proliferation of cardiomyocytes were not influenced but the levels of oxidative stress were upregulated by DM exposure. Fullerenes and astaxanthin was able to rescue cardiac defects caused by DM via downregulating oxidative stress. Wnt signaling was downregulated after DM treatment and activation of Wnt signaling could rescue cardiac defects. Therefore, our results suggest that DM has the potential to induce cardiac developmental toxicity through upregulation of Wnt-Mediated (reactive oxygen species) ROS generation in zebrafish larvae.
اظهر المزيد [+] اقل [-]The cardiovascular toxicity induced by high doses of gatifloxacin and ciprofloxacin in zebrafish النص الكامل
2019
Shen, Rong | Yu, Yichang | Lan, Rong | Yu, Ran | Yuan, Ze | Xia, Zhining
As a new type of pollutant, fluoroquinolones (FQs) antibiotics are ubiquitous in environment and have some threat to human health and ecological environment. Their ecological toxicity to the environment urgently need to be assessed. Therefore, we firstly explored the toxic effects and possible mechanism of cardiovascular toxicity induced by gatifloxacin (GTFX) and ciprofloxacin (CPFX) using zebrafish model. After 24 h exposure, the zebrafish treated with GTFX showed pericardial edema which was further investigated by histopathological examination, while CPFX exposure did not induce morphological abnormalities. However, both of them induced cardiac dysfunction, such as decreased heart rate and cardiac output which was showed a positive correlation with the concentration. To better understand the possible molecular mechanisms underlying cardiovascular toxicity in zebrafish, we investigated the transcriptional level of genes related to calcium signaling pathway and cardiac muscle contraction. The results indicated that the expression of ATPase (atp2a1l) and cardiac troponin C (tnnc1a) genes were significantly inhibited, the expression of calcium channel (cacna1ab) gene showed slight promoted trend after CPFX exposure. For zebrafish treated with GTFX, the expression of atp2a1l genes was also significantly inhibited, while the expression of tnnc1a genes was slightly inhibited and cacna1ab genes expression had no obvious effect. The present study firstly revealed that GTFX exposure can induce morphological and functional abnormalities on the cardiovascular system of zebrafish. Though CPFX exposure did not induce morphological abnormalities, the function of cardiovascular system was still damaged. Mechanistically, this toxicity might result from the pressure of down-regulation of genes associated with calcium signaling pathway and cardiac muscle contraction. The results of this study can provide a valuable theoretical basis for the establishment of FQs environmental quality standards in water environment, environmental drug regulation and risk management.
اظهر المزيد [+] اقل [-]The cardiovascular toxicity of triadimefon in early life stage of zebrafish and potential implications to human health النص الكامل
2017
Liu, Hong-cui | Chu, Tian-yi | Chen, Li-li | Gui, Wen-jun | Zhu, Guo-nian
The health risk of triadimefon (TF) to cardiovascular system of human is still unclear, especially to pesticide suicides population, occupational population (farmers, retailers and pharmaceutical workers), and special population (young children and infants, pregnant women, older people, and those with compromised immune systems) who are at a greater risk. Therefore, firstly we explored the toxic effects and possible mechanism of cardiovascular toxicity induced by TF using zebrafish model. Zebrafish at stage of 48 h post fertilization (hpf) exposed to TF for 24 h exhibited morphological malformations which were further confirmed by histopathologic examination, including pericardial edema, circulation abnormalities, serious venous thrombosis and increased distance between the sinus venosus (SV) and bulbus arteriosus (BA) regions of the heart. In addition to morphological changes, TF induced functional deficits in the heart of zebrafish, including bradycardia and a significant reduced cardiac output that became more serious at higher concentrations. To better understand the possible molecular mechanisms underlying cardiovascular toxicity in zebrafish, we investigated the transcriptional level of genes related to calcium signaling pathway and cardiac muscle contraction. Q-PCR (quantitative real-time polymerase chain reaction) results demonstrated that the expression level of genes related to ATPase (atp2a1l, atp1b2b, atp1a3b), calcium channel (cacna1ab, cacna1da) and cardiac troponin C (tnnc1a) were significantly decreased after TF exposure. For the first time, the present study revealed that TF exposure had observable morphological and functional negative impacts on cardiovascular system of zebrafish. Mechanistically, this toxicity might result from the pressure of down-regulation of genes associated with calcium signaling pathway and cardiac muscle contraction following TF exposure. These findings generated here can provide information for better pesticide poisoning treatments, occupational disease prevention, and providing theoretical foundation for risk management measures.
اظهر المزيد [+] اقل [-]Cardio-respirometry disruption in zebrafish (Danio rerio) embryos exposed to hydraulic fracturing flowback and produced water النص الكامل
2017
Folkerts, Erik J. | Blewett, Tamzin A. | He, Yuhe | Goss, Greg G.
Hydraulic fracturing to extract oil and natural gas reserves is an increasing practice in many international energy sectors. Hydraulic fracturing flowback and produced water (FPW) is a hyper saline wastewater returned to the surface from a fractured well containing chemical species present in the initial fracturing fluid, geogenic contaminants, and potentially newly synthesized chemicals formed in the fracturing well environment. However, information on FPW toxicological mechanisms of action remain largely unknown. Both cardiotoxic and respirometric responses were explored in zebrafish (Danio rerio) embryos after either an acute sediment-free (FPW-SF) or raw/sediment containing (FPW-S) fraction exposure of 24 and 48 h at 2.5% and 5% dilutions. A 48 h exposure to either FPW fraction in 24–72 h post fertilization zebrafish embryos significantly increased occurrences of pericardial edema, yolk-sac edema, and tail/spine curvature. In contrast, larval heart rates significantly decreased after FPW fraction exposures. FPW-S, but not FPW-SF, at 2.5% doses significantly reduced embryonic respiration/metabolic rates (MO2), while for 5% FPW, both fractions reduced MO2. Expression of select cardiac genes were also significantly altered in each FPW exposure group, implicating a cardiovascular system compromise as the potential cause for reduced embryonic MO2. Collectively, these results support our hypothesis that organics are major contributors to cardiac and respiratory responses to FPW exposure in zebrafish embryos. Our study is the first to investigate cardiac and respiratory sub-lethal effects of FPW exposure, demonstrating that FPW effects extend beyond initial osmotic stressors and verifies the use of respirometry as a potential marker for FPW exposure.
اظهر المزيد [+] اقل [-]Acute and developmental toxic effects of mono-halogenated and halomethyl naphthalenes on zebrafish (Danio rerio) embryos: Cardiac malformation after 2-bromomethyl naphthalene exposure النص الكامل
2022
Park, Jungeun | Kim, Yurim | Jeon, Hwang-Ju | Kim, Kyeongnam | Kim, Chaeeun | Lee, Seungki | Son, Jino | Lee, Sung-Eun
Polyhalogenated polycyclic aromatic hydrocarbons (HPAHs) represent a major environmental concern due to their persistency and toxicity. Among them, mono-halogenated (HNs) and halomethyl naphthalenes (HMNs) are not well-studied, and the toxicity of many HNs to fishes has not been reported. In this study, we exposed zebrafish (Danio rerio) embryos to naphthalene and five HNs at concentrations ranging from 0.25 to 2.0 mg L⁻¹ to assess acute toxicities and developmental effects. Among them, 2-bromomethyl naphthalene (2-BMN) produced moderate lethal effects (96-h LC₅₀ = 1.4 mg L⁻¹) and significantly reduced hatchability. Abnormal phenotypes, including pericardial edema, spine curvature, and shortened body length, were also induced by 2-BMN (96-h EC₅₀ = 0.45 mg L⁻¹). Treatments of 0.5–2.0 mg L⁻¹ 2-BMN evoked cardiac malformations via significant down-regulation of the cacna1c gene, which codes the voltage-dependent calcium channel, at 72 hpf and up-regulation of the nppa gene, responsible for the expression of natriuretic peptides, at 96 hpf in zebrafish. One presumable toxic photo-dissociated metabolite of 2-BMN, the 2-naphthylmethyl radical, may be responsible for the toxic effect on zebrafish embryos. HPAHs must be monitored and managed due to their adverse effects on living organisms at low concentrations.
اظهر المزيد [+] اقل [-]Polystyrene microplastics inhibit the neurodevelopmental toxicity of mercury in zebrafish (Danio rerio) larvae with size-dependent effects النص الكامل
2022
Wang, Jing | Wu, Jin | Cheng, Haodong | Wang, Yudi | Fang, Yanjun | Wang, Lei | Duan, Zhenghua
Insufficient evidence exists regarding the effects of microplastics (MPs) on the neuronal toxicity of heavy metals in the early stages of organisms. Herein, the effects of micro-polystyrene (μ-PS; 157 μm) and nano-polystyrene (n-PS; 100 nm) particles on the neurodevelopmental toxicity of mercury (Hg) in zebrafish embryos were compared. Zebrafish embryos exposed to Hg at the concentration of 0.1 mg L⁻¹ revealed blood disorders, delayed hatching, and malformations such as pericardial oedema and tail deformity. The length of the larval head was significantly reduced (P < 0.01) and in vivo expression of atoh1a in the cerebellum of neuron-specific transgenic zebrafish Tg(atoh1a:dTomato) larvae was inhibited by 29.46% under the Hg treatment. Most of the toxic effects were inhibited by the combined exposure to μ-PS or n-PS with Hg, and n-PS decreased the neurodevelopmental toxicity of Hg more significantly than μ-PS. Metabolomic analysis revealed that in addition to inhibiting the amino acid metabolism pathway as in the μ-PS+Hg treatment, the n-PS+Hg treatment inhibited unsaturated fatty acid metabolism in zebrafish larvae, likely because of a greater reduction in Hg bioavailability, thus reducing the oxidative damage caused by Hg in the larvae. The combined effects of MPs and heavy metals differ greatly among different species and their targeted effects. We conclude that the combined toxicity mechanisms of MPs and heavy metals require further clarification.
اظهر المزيد [+] اقل [-]Effect of flupyradifurone on zebrafish embryonic development النص الكامل
2021
Zhong, Keyuan | Meng, Yunlong | Wu, Juan | Wei, You | Huang, Yong | Ma, Jinze | Lu, Huiqiang
Evaluation of the toxicity of pesticide residues on non-target organisms in the ecosystem is an important part of pesticide environmental risk assessment. Flupyradifurone is a new type of butenolide insecticide produced by Bayer, who claims it to be “low toxic” to non-target organisms in the environment. However, there is little evidence in the literature to show how flupyradifurone affects aquatic organism development. In the current study, zebrafish embryos were treated with 0.1, 0.15, and 0.2 mg/mL of flupyradifurone within 6.0–72 h past fertilization (hpf). We found that the half-lethal concentration (LC₅₀) of flupyradifurone for zebrafish embryos at 96 hpf was 0.21 mg/mL. Flupyradifurone decreases the heart rate, survival rate, and body length of zebrafish embryos. The flupyradifurone treatment also led to the failure of heart looping, and pericardial edema. Moreover, flupyradifurone increased the level of reactive oxygen species (ROS) and decreased the enzymatic catalysis of catalase (CAT) and superoxide dismutase (SOD). Alterations were induced in the transcription of apoptosis-related genes (bcl-2, bax, bax/bcl-2, p53 and caspase-9) and the heart development-related genes (gata4, myh6, nkx2.5, nppa, tbx2b, tbx5 and vmhc). In the current study, new evidences have been provided regarding the toxic effects of flupyradifurone and the risk of its residues in agricultural products and the environment.
اظهر المزيد [+] اقل [-]