خيارات البحث
النتائج 1 - 10 من 26
Ammonium-nitrogen addition at the seedling stage does not reduce grain cadmium concentration in two common wheat (Triticum aestivum L.) cultivars
2021
Cheng, Yiran | Yang, Tian | Xiang, Wenhui | Li, Siyu | Fan, Xing | Sha, Lina | Kang, Houyang | Wu, Dandan | Zhang, Haiqin | Zeng, Jian | Zhou, Yonghong | Wang, Yi
High cadmium (Cd) concentration in common wheat (Triticum aestivum L.) grains poses potential health risks. Several management strategies have been used to reduce grain Cd concentration. However, limited information is available on the use of ammonium-nitrogen (NH₄⁺-N) as a strategy to manage Cd concentration in wheat grains. In this study, NH₄⁺-N addition at the seedling stage unchanged the grain Cd concentration in the high-Cd accumulator, Zhoumai 18 (ZM18), but dramatically increased that in the low-Cd accumulator, Yunmai 51 (YM51). Further analysis revealed that the effects of NH₄⁺-N addition on whole-plant Cd absorption, root-to-shoot Cd translocation, and shoot-to-grain Cd remobilization were different between the two wheat cultivars. In ZM18, NH₄⁺-N addition did not change whole-plant Cd absorption, but inhibited root-to-shoot Cd translocation and Cd remobilization from lower internodes, lower leaves, node 1, and internode 1 to grains via the down-regulation of yellow stripe-like transporters (YSL), zinc transporters (ZIP5, ZIP7, and ZIP10), and heavy-metal transporting ATPases (HMA2). This inhibition decreased the grain Cd content by 29.62%, which was consistent with the decrease of the grain dry weight by 23.26%, leading to unchanged grain Cd concentration in ZM18. However, in YM51, NH₄⁺-N addition promoted continuous Cd absorption during grain filling, root-to-shoot Cd translocation and whole-plant Cd absorption. The absorbed Cd was directly transported to internode 1 via the xylem and then re-transported to grains via the phloem by up-regulated YSL, ZIP5, and copper transporters (COPT4). This promotion increased the grain Cd content by 245.35%, which was higher than the increased grain dry weight by 132.89%, leading to increased grain Cd concentration in YM51. Our findings concluded that the addition of NH₄⁺-N fertilizer at the seedling stage is not suitable for reducing grain Cd concentration in common wheat cultivars.
اظهر المزيد [+] اقل [-]Zinc regulation of iron uptake and translocation in rice (Oryza sativa L.): Implication from stable iron isotopes and transporter genes
2022
Wu, Qiqi | Liu, Chengshuai | Wang, Zhengrong | Gao, Ting | Liu, Yuhui | Xia, Yafei | Yin, Runsheng | Qi, Meng
Iron (Fe) is an essential nutrient for living organisms and Fe deficiency is a worldwide problem for the health of both rice and humans. Zinc (Zn) contamination in agricultural soils is frequently observed. Here, we studied Fe isotope compositions and transcript levels of Fe transporter genes in rice growing in nutrient solutions having a range of Zn concentrations. Our results show Zn stress reduces Fe uptake by rice and drives its δ⁵⁶Fe value to that of the nutrient solution. These observations can be explained by the weakened Fe(II) uptake through Strategy I but enhanced Fe(III) uptake through Strategy II due to the competition between Zn and Fe(II) combining with OsIRT1 (Fe(II) transporter) in root, which is supported by the downregulated expression of OsIRT1 and upregulated expression of OsYSL15 (Fe(III) transporter). Using a mass balance box model, we also show excess Zn reduces Fe(II) translocation in phloem and its remobilization from senescent leaf, indicating a competition of binding sites on nicotianamine between Zn and Fe(II). This study provides direct evidence that how Zn regulates Fe uptake and translocation in rice and is of practical significance to design strategies to treat Fe deficiency in rice grown in Zn-contaminated soils.
اظهر المزيد [+] اقل [-]A Cd/Zn Co-hyperaccumulator and Pb accumulator, Sedum alfredii, is of high Cu tolerance
2020
Xv, Lingling | Ge, Jun | Tian, Shengke | Wang, Haixin | Yu, Haiyue | Zhao, Jianqi | Lu, Lingli
High sensitivity towards Cu toxicity is problematic when using some hyperaccumulator plants for phytoremediation of soils with mixed contamination of Cu. Sedum alfredii, a Cd/Zn co-hyperaccumulator and Pb accumulator, is widely used for remediation of Cd, Zn, and Pb co-contaminated soils in China. In this paper, the tolerance and accumulation ability of S. alfredii towards Cu stress and its potential for phytoremediation of multi-metal polluted soils have been studied. Both the hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of S. alfredii accumulated high Cu in the roots and translocated minimal Cu to the shoots, and Cu in the stems and leaves mostly restricted in the vascular tissues (phloem zone). The HE plants, however, exhibited high Cu resistance with stimulated lateral root growth and increased chlorophyll content under 10 μM Cu treatment. XANES analysis showed that Cu in HE roots comprised Cu²⁺ (46.7%), Cu-histidine (35.2%) and Cu-cell wall (18.1%). The NHE under Cu stress showed decreased biomass, reduced leaf chlorophyll content, altered root architecture, and higher Cu localized to root cell wall as compared with the HEs. Potted HE plants thrived six months in multi-metal contaminated soils including 3897 mg kg⁻¹ available Cu. In conclusion, HE S alfredii is highly tolerant toward Cu due to metal homeostasis in root cells. Therefore, this plant has great potential to remediate Zn, Cd, and Pb contaminated soils those also contain high levels of Cu.
اظهر المزيد [+] اقل [-]Acropetal translocation of phenanthrene in wheat seedlings: Xylem or phloem pathway?
2020
Due to the potential toxicity of polycyclic aromatic hydrocarbons (PAHs) to humans, the uptake and translocation of PAHs in food crops have gained much attention. However, it is still unclear whether phloem participates in the acropetal translocation of PAHs in plants. Herein, the evidence for acropetal translocation of phenanthrene (a model PAH) via phloem is firstly tested. Wheat (Triticum aestivum L.) new leaves contain significantly higher phenanthrene concentration than old leaves (P < 0.05), and the inhibitory effect on phenanthrene translocation is stronger in old leaves after abscisic acid and polyvinyl alcohol (two common transpiration inhibitors) application. Phenanthrene concentration in xylem sap is slightly higher than in phloem sap. Ring-girdling treatment can significantly reduce phenanthrene concentration in castor bean (Ricinus communis L.) leaves. Two-photon fluorescence microscope images indicate a xylem-to-phloem and acropetal phloem translocation of phenanthrene in castor bean stem. Therefore, phloem is involved in the acropetal translocation of phenanthrene in wheat seedlings, especially when the xylem is not mature enough in scattered vascular bundle plants. Our results provide a deeper understanding of PAH translocation in plants, which have significant implications for food safety and phytoremediation enhancement of PAH-contaminated soil and water.
اظهر المزيد [+] اقل [-]Retrospective study of methylmercury and other metal(loid)s in Madagascar unpolished rice (Oryza sativa L.)
2015
Rothenberg, Sarah E. | Mgutshini, Nomathamsanqa L. | Bizimis, Michael | Johnson-Beebout, Sarah E. | Ramanantsoanirina, Alain
The rice ingestion rate in Madagascar is among the highest globally; however studies concerning metal(loid) concentrations in Madagascar rice are lacking. For Madagascar unpolished rice (n = 51 landraces), levels of toxic elements (e.g., total mercury, methylmercury, arsenic and cadmium) as well as essential micronutrients (e.g., zinc and selenium) were uniformly low, indicating potentially both positive and negative health effects. Aside from manganese (Wilcoxon rank sum, p < 0.01), no significant differences in concentrations for all trace elements were observed between rice with red bran (n = 20) and brown bran (n = 31) (Wilcoxon rank sum, p = 0.06–0.91). Compared to all elements in rice, rubidium (i.e., tracer for phloem transport) was most positively correlated with methylmercury (Pearson's r = 0.33, p < 0.05) and total mercury (r = 0.44, p < 0.05), while strontium (i.e., tracer for xylem transport) was least correlated with total mercury and methylmercury (r < 0.01 for both), suggesting inorganic mercury and methylmercury were possibly more mobile in phloem compared to xylem.
اظهر المزيد [+] اقل [-]Food-chain transfer of zinc from contaminated Urtica dioica and Acer pseudoplatanus L. to the aphids Microlophium carnosum and Drepanosiphum platanoidis Schrank
2010
Sinnett, Danielle | Hutchings, Tony R. | Hodson, Mark E.
This study examines the food-chain transfer of Zn from two plant species, Urtica dioica (stinging nettle) and Acer pseudoplatanus (sycamore maple), into their corresponding aphid species, Microlophium carnosum and Drepanosiphum platanoidis. The plants were grown in a hydroponic system using solutions with increasing concentrations of Zn from 0.02 to 41.9 mg Zn/l. Above-ground tissue concentrations in U. dioica and M. carnosum increased with increasing Zn exposure (p < 0.001). Zn concentrations in A. pseudoplatanus also increased with solution concentration from the control to the 9.8 mg Zn/l solution, above which concentrations remained constant. Zn concentrations in both D. platanoidis and the phloem tissue of A. pseudoplatanus were not affected by the Zn concentration in the watering solution. It appears that A. pseudoplatanus was able to limit Zn transport in the phloem, resulting in constant Zn exposure to the aphids. Zn concentrations in D. platanoidis were around three times those in M. carnosum. Concentrations of Zn in two aphid species are dependant on species and exposure.
اظهر المزيد [+] اقل [-]Arsenic behavior in soil-plant system and its detoxification mechanisms in plants: A review
2021
Khan, Imran | Awan, Samrah Afzal | Rizwan, Muhammad | Ali, Shafaqat | Zhang, Xinquan | Huang, Linkai
Arsenic (As) is one of the most toxic and cancer-causing metals which is generally entered the food chain via intake of As contaminated water or food and harmed the life of living things especially human beings. Therefore, the reduction of As content in the food could be of great importance for healthy life. To reduce As contamination in the soil and food, the evaluation of plant-based As uptake and transportation mechanisms is critically needed. Different soil factors such as physical and chemical properties of soil, soil pH, As speciation, microbial abundance, soil phosphates, mineral nutrients, iron plaques and roots exudates effectively regulate the uptake and accumulation of As in different parts of plants. The detoxification mechanisms of As in plants depend upon aquaporins, membrane channels and different transporters that actively control the influx and efflux of As inside and outside of plant cells, respectively. The xylem loading is responsible for long-distance translocation of As and phloem loading involves in the partitioning of As into the grains. However, As detoxification mechanism based on the clear understandings of how As uptake, accumulations and translocation occur inside the plants and which factors participate to regulate these processes. Thus, in this review we emphasized the different soil factors and plant cell transporters that are critically responsible for As uptake, accumulation, translocation to different organs of plants to clearly understand the toxicity reasons in plants. This study could be helpful for further research to develop such strategies that may restrict As entry into plant cells and lead to high crop yield and safe food production.
اظهر المزيد [+] اقل [-]Plant accumulation and transformation of brominated and organophosphate flame retardants: A review
2021
Zhang, Qing | Yao, Yiming | Wang, Yu | Zhang, Qiuyue | Cheng, Zhipeng | Li, Yongcheng | Yang, Xiaomeng | Wang, Lei | Sun, Hongwen
Plants can take up and transform brominated flame retardants (BFRs) and organophosphate flame retardants (OPFRs) from soil, water and the atmosphere, which is of considerable significance to the geochemical cycle of BFRs and OPFRs and their human exposure. However, the current understanding of the plant uptake, translocation, accumulation, and metabolism of BFRs and OPFRs in the environment remains very limited. In this review, recent studies on the accumulation and transformation of BFRs and OPFRs in plants are summarized, the main factors affecting plant accumulation from the aspects of root uptake, foliar uptake, and plant translocation are presented, and the metabolites and metabolic pathways of BFRs and OPFRs in plants are analyzed. It was found that BFRs and OPFRs can be taken up by plants through partitioning to root lipids, as well as through gaseous and particle-bound deposition to the leaves. Their microscopic distribution in roots and leaves is important for understanding their accumulation behaviors. BFRs and OPFRs can be translocated in the xylem and phloem, but the specific transport pathways and mechanisms need to be further studied. BFRs and OPFRs can undergo phase I and phase II metabolism in plants. The identification, quantification and environmental fate of their metabolites will affect the assessment of their ecological and human exposure risks. Based on the issues mentioned above, some key directions worth studying in the future are proposed.
اظهر المزيد [+] اقل [-]The influence of air pollutants on needles and stems of Scots pine (Pinus sylvestris L.) trees
1997
Kurczynska, E.U. | Dmuchowski, W. | Wloch, W. | Bytnerowicz, A. (Department of Biophysics and Cell Biology, Silesian University, ul. Jagiellonska 28, 40-034 Katowice (Poland))
Environmental behaviors of spirotetramat in water
2018
Chen, Xiaojun | Ren, Li | Meng, Zhiyuan | Zhang, Qingxia | Song, Yueyi | Guan, Lingjun | Fan, Tianle | Xu, Yuwei | Shen, Dianjing
Spirotetramat is a pesticide with bidirectional systemicity in both xylem and phloem. Currently, researches show that spirotetramat has definite toxicity to aquatic organism. This paper aims to study the environmental behaviors of spirotetramat in water, in the hope of providing guidance for security evaluation of spirotetramat. The researches in this paper showed that under lighting condition, the half-life period of spirotetramat in water was 13.59 days. In water, spirotetramat could be degraded into B-enol and B-keto. As seen from the residual concentrations of two products, B-enol was the dominant degradation product. Under different temperatures, the hydrolysis products of spirotetramat remain B-enol and B-keto. The temperature has little effect on the residual concentration of spirotetramat in water. The residual concentration of B-enol in water gradually increased with the extension of time but B-keto had no significant change. In the buffer solution of different pH values, the degradation rate of spirotetramat was significantly enhanced with the increase of solution pH value. The hydrolysis products of spirotetramat in buffer solution of different pH values were still B-enol and B-keto, and pH exerted certain influence on the residual concentration of B-enol in water. The hydrolysis conversion of spirotetramat has theoretical and practical significance for the safe and reasonable usage of it, as well as for the further evaluation of spirotetramat’s ecological risk in water.
اظهر المزيد [+] اقل [-]