خيارات البحث
النتائج 1 - 10 من 1,495
Effect of a thermal power plant waste fly ash on leguminous and non-leguminous leafy vegetables in extracting maximum benefits from P and K fertilization النص الكامل
2015
Inam, Akhtar | Sahay, Seema
Although the Indian population is largely vegetarian, not much attention has been given to the cultivation of vegetables, as compared to other crops like cereals, pulses and oil seeds. Therefore, the present study was conducted on two leafy vegetables, spinach (Spanacia oleracea L.) and methi (Trigonella foenum graecum L.) commonly grown in Aligarh, as the two popular vegetables of Indian diet. The study was conducted for two successive years and during the first year, phosphorus and fly ash interactions with a uniform dose of nitrogen and potassium on both vegetables was observed. During the second year, while keeping nitrogen and phosphorus uniform, potassium and fly ash combinations were studied again with both vegetables, to determine the optimum dose of inorganic fertilizers and fly ash combination. It was observed that fly ash applied at the rate of 15 t ha-1 along with N40P15K20, proved optimum for spinach while in the case of methi, N20P30K40 + FA10 was sufficient. Therefore, both vegetables can safely be grown with 10 to 15 t ha-1 of fly ash and a comparatively lower quantity of NPK.
اظهر المزيد [+] اقل [-]Forest decline and soil nutritional problems in Pacific areas.
1990
Mueller Dombois D.
Lanscape control on diffuse pollution : a critical review on some investigations on phosphorus – retaining landscape features النص الكامل
2011
Dorioz , Jean Marcel (INRA , Thonon-Les-Bains (France). UMR 0042 Centre Alpin de Recherche sur les Réseaux Trophiques des Ecosystèmes limniques) | Gascuel-Odoux , Chantal (INRA , Rennes (France). UMR 1069 Sol Agro et hydrosystème Spatialisation) | Merot , Philippe (INRA , Rennes (France). UMR 1069 Sol Agro et hydrosystème Spatialisation) | Trevisan , Dominique (INRA , Thonon-Les-Bains (France). UMR 0042 Centre Alpin de Recherche sur les Réseaux Trophiques des Ecosystèmes limniques)
This text focuses on the identification, efficiencies, classification and management of landscape features having a potential buffer function regarding diffuse phosphorus, because of their specific structure (vegetation-soil) and of their location at the interface between sources (farm infrastructures, emitting fields…) and surface water bodies. These buffers are very diverse and correspond to natural landscape features (wetlands, riparian areas…) as well as manmade structures (constructed buffer strips or intermediate cases such as field margins, hedgerows). Their role and efficiency depends on the local factors controlling the retention processes (internal organisation and properties of the buffer), on the position within the watershed, and on the landscape context which reciprocally determines the overall buffer capacity of a watershed. On that basis, we recognize the diversity of the buffers in structure and functioning and thus in the way they attenuate the signal, their limitations (sustainability, side effects) and their hierarchic organisation at the watershed scale.
اظهر المزيد [+] اقل [-]Lanscape control on diffuse pollution : a critical review on some investigations on phosphorus – retaining landscape features النص الكامل
2010
Dorioz, Jean Marcel | Gascuel, Chantal | Mérot, Philippe | Trevisan, Dominique | Centre Alpin de Recherche sur les Réseaux Trophiques et Ecosystèmes Limniques (CARRTEL) ; Institut National de la Recherche Agronomique (INRA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]) | Sol Agro et hydrosystème Spatialisation (SAS) ; Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST
This text focuses on the identification, efficiencies, classification and management of landscape features having a potential buffer function regarding diffuse phosphorus, because of their specific structure (vegetation-soil) and of their location at the interface between sources (farm infrastructures, emitting fields…) and surface water bodies. These buffers are very diverse and correspond to natural landscape features (wetlands, riparian areas…) as well as manmade structures (constructed buffer strips or intermediate cases such as field margins, hedgerows). Their role and efficiency depends on the local factors controlling the retention processes (internal organisation and properties of the buffer), on the position within the watershed, and on the landscape context which reciprocally determines the overall buffer capacity of a watershed. On that basis, we recognize the diversity of the buffers in structure and functioning and thus in the way they attenuate the signal, their limitations (sustainability, side effects) and their hierarchic organisation at the watershed scale.
اظهر المزيد [+] اقل [-]A phospho-compost biological-based approach increases phosphate rock agronomic efficiency in faba bean as compared to chemical and physical treatments. النص الكامل
2022
Chtouki, Mohamed | Bargaz, Adnane | Lyamlouli, Karim | Oukarroum, Abdallah | Zeroual, Youssef
peer reviewed | Under arid and semi-arid conditions, direct application of phosphate rock (PR) as a source of phosphorus (P) for crop production is likely influenced by agricultural practices and soil properties. Different approaches could be used to improve the agronomic efficiency of low-grade PR over a wider range of soils and crops. In this study, biological, physical, and chemical treatments of low-grade Moroccan PR were investigated and compared through agronomic trials on faba bean grown under alkaline soil conditions. The physical treatment was based on blending PR with triple superphosphate (TSP) at 75:25 and 50:50 ratios, the biological treatments involved co-application of PR with compost at 50:50 ratio and phospho-compost elaborated from PR (20%), sewage sludge (46%), and wheat residues (34%), while the chemical treatment was obtained by a 30% acidulation of PR by phosphoric acid. Control treatments consisting of zero P application (control), PR alone, and TSP alone were considered to assess the effectiveness of the abovementioned techniques to improve PR agronomic efficiency. A pot experiment was conducted in sandy soil (Jorf Lasfar, central Morocco) for 60 days in a completely randomized design considering eight treatments. All treatments, except the control, were amended with 52 mg kg-1 of P from different PR-based fertilizers before sowing. At the flowering stage (60-day-old plants), results indicated that all PR treatments significantly improved plant growth, root nodulation, and nutrient uptake compared to the control. The relative agronomic efficiency of pretreated PR was significantly higher with phospho-compost treatment (86%) than the partially acidulated PR (78%) or the PR/TSP blend 50:50 (64%). Likewise, P uptake, P use efficiency, number of root nodules, and N uptake all were improved under PR treatments. Our finding revealed that the biological technique based on phospho-compost yielded better compared to chemical and physical treatments.
اظهر المزيد [+] اقل [-]Phosphorus removal by apatite in horizontal flow constructed wetlands: kinetics and treatment reliability النص الكامل
2008
Harouiya, N. | Molle, Pascal | Prost Boucle, S. | Liénard, A.
Phosphorus removal in constructed wetlands have received particular attention last decades by using specific materials promoting adsorption/precipitation mechanisms. Recent studies have shown interest in using apatite materials to promote P precipitation onto the particle surface. As previous trials were mainly done by lab experiments, this present study aims to evaluate the real potential of apatites to remove P from wastewater in pilots and a full-scale plant. Two different apatites have been studied in 1.5 m² pilots fed with wastewater from the outlet of a trickling filter. They were monitored to follow inlet/oulet flows, hydraulic gradient, meteorological conditions, pH, temperature, and redox potential. Treatment performances were evaluated by regular complete analysis (COD, BOD, SS, nitrogen and phosphorus forms, Ca) as well as PO4-P by a WTW online analyser. At the same time a full-scale experiment study have been done to point out P retention properties in real conditions over a 2 years period. P retention kinetics of two qualities of apatites are presented and discussed according to the temperature dependence. In this work apatite appears to have high retention capacity and is still an interesting way for P removal in constructed wetlands. However, other qualities of apatite must be studied for a better reliability of treatment.
اظهر المزيد [+] اقل [-]Effects of soil fluoride pollution on wheat growth and biomass production, leaf injury index, powdery mildew infestation and trace metal uptake النص الكامل
2022
Ahmad, Muhammad Nauman | Zia, Afia | van den Berg, Leon | Ahmad, Yaseen | Mahmood, Rashid | Dawar, Khadim Muhammad | Alam, Syed Sartaj | Riaz, Muhammad | Ashmore, Mike
Fluoride (F) is an emerging pollutant that originates from multiple sources and adversely affects plant growth and nutrient bioavailability in soil. This greenhouse study investigated the effects of soil F (0, 10, 20, 50, 100, 200 mg kg⁻¹) on morpho-physiological growth characteristics of wheat, soil F contents, and bioavailability and uptake of F, phosphorus (P), sulphur (S), potassium (K), calcium (Ca), magnesium (Mg), aluminium (Al), iron (Fe), manganese (Mn), silicon (Si) and zinc (Zn) by wheat. Higher F significantly reduced plant height and number of leaves particularly at early growth stages and increased visible leaf injury index. Powdery mildew infestation coincided with leafy injury and was higher in elevated soil F treatments. Fluoride treatments (>50 mg kg⁻¹) significantly increased water (H₂O)- and calcium chloride (CaCl₂)-extractable F contents in soil. Water-extractable soil F contents from soil in all concentration were higher than CaCl₂-extractable F. This increased F bioavailability resulted in significantly higher F uptake and accumulation in live leaves, dead leaves and grains of wheat which followed order: live leaves > dead leaves > grains. Leaf injury index and number of dead leaves correlated significantly positively with soil H₂O- and CaCl₂-extractable F contents. Patterns of nutrient (P, K, S) and trace metals (Al, Ca, Mg, Fe, Mn, Si, Zn) varied significantly with F concentrations and between live and dead leaves, and grains except for Zn. Dead leaves generally had higher nutrients and trace metals than live leaves and grains. Fluoride contents in live leaves, dead leaves and grains showed positive correlations with nutrient elements but negative with trace metals. Number of dead leaves correlated negatively with Al, Ca, Fe, Mg, S and Si but positively with P and Zn contents in dead leaves whereas leaf injury index showed positive correlation with Fe, K, P, Si, Zn, S but negative with Al, Ca and Mg contents. These observations provided evidence of higher F uptake and associated impairment in nutrient and trace metal accumulation which caused leaf injury accompanied by powdery mildew infestation in wheat. However, further research in the region is required to confirm the relationship between F pollution, leaf injury and trace metal accumulation in crops under field conditions.
اظهر المزيد [+] اقل [-]Transfer of elements into boreal forest ants at a former uranium mining site النص الكامل
2022
Roivainen, Päivi | Muurinen, Saara-Maria | Sorvari, Jouni | Juutilainen, Jukka | Naarala, Jonne | Salomaa, Sisko
Ants can influence ecological processes, such as the transfer of elements or radionuclides, in several ways. For example, they redistribute materials while foraging and maintaining their nests and have an important role in terrestrial food webs. Quantitative data of the transfer of elements into ants is needed, e.g., for developing improved radioecological models. In this study, samples of red wood ants (genus Formica), nest material, litter and soil were collected from a former uranium mining site in Eastern Finland. Concentrations of 33 elements were analyzed by Inductively Coupled Plasma-Mass Spectroscopy/Optical Emission Spectroscopy. Estimated element concentrations in spruce needles were used as a proxy for studying the transfer of elements into ants via aphids because spruces host the most important aphid farms in boreal forests. Empirically determined organism/medium concentration ratios (CRs) are commonly used in radioecological models. Ant/soil CRs were calculated and the validity of the fundamental assumption behind the of use of CRs (linear transfer) was evaluated. Elements that accumulated in ants in comparison to other compartments were cadmium, potassium, phosphorus, sulfur, and zinc. Ant uranium concentrations were low in comparison to soil, litter, or nest material but slightly elevated in comparison to spruce needles. Ant element concentrations were quite constant regardless of the soil concentrations. Non-linear transfer models could therefore describe the soil-to-ant transfer better than conventional CRs.
اظهر المزيد [+] اقل [-]Microbial metabolic limitation of rhizosphere under heavy metal stress: Evidence from soil ecoenzymatic stoichiometry النص الكامل
2022
Duan, Chengjiao | Wang, Yuhan | Wang, Qiang | Ju, Wenliang | Zhang, Zhiqin | Cui, Yongxing | Beiyuan, Jingzi | Fan, Qiaohui | Wei, Shiyong | Li, Shiqing | Fang, Linchuan
Slow nutrient turnover and destructed soil function were the main factors causing low efficiency in phytoremediation of heavy metal (HM)-contaminated soil. Soil ecoenzymatic stoichiometry can reflect the ability of soil microorganisms to acquire energy and nutrients, and drive nutrient cycling and carbon (C) decomposition in HM-contaminated soil. Therefore, for the first time, we used the enzymatic stoichiometry modeling to examine the microbial nutrient limitation in rhizospheric and bulk soil of different plants (Medicago sativa, Halogeton arachnoideus and Agropyron cristatum) near the Baiyin Copper Mine. Results showed that the main pollutants in this area were Cu, Zn, Cd, and Pb, while Cd and Zn have the greatest contribution according to the analysis of pollution load index (PLI). The activities of soil C-, nitrogen (N)-, and phosphorus (P)-acquiring enzymes in the rhizosphere of plants were significantly greater than that in bulk soil. Moreover, microbial C and P limitations were observed in all plant treatments, while the lower limitation was generally in the rhizosphere compared to bulk soil. The HM stress significantly increased microbial C limitation and decreased microbial P limitation, especially in the rhizospheric soil. The partial least squares path modeling (PLS-PM) further indicated that HM concentration has the greatest effects on microbial P limitation (−0.64). In addition, the highest enzyme activities and the lowest P limitation were observed in the rhizospheric and bulk soil of M. sativa, thereby implying that soil microbial communities under the remediation of M. sativa were steadier and more efficient in terms of their metabolism. These findings are important for the elucidation of the nutrient cycling and microbial metabolism of rhizosphere under phytoremediation, and provide guidance for the restoration of HM-contaminated soil.
اظهر المزيد [+] اقل [-]Wood vinegar facilitated growth and Cd/Zn phytoextraction of Sedum alfredii Hance by improving rhizosphere chemical properties and regulating bacterial community النص الكامل
2022
Zhou, Xueqi | Shi, An | Rensing, Christopher | Yang, Jing | Ni, Wuzhong | Xing, Shihe | Yang, Wenhao
Soil Cd and Zn contamination has become a serious environmental problem. This work explored the performance of wood vinegar (WV) in enhancing the phytoextraction of Cd/Zn by hyperaccumulator Sedum alfredii Hance. Rhizosphere chemical properties, enzyme activities and bacterial community were analyzed to determine the mechanisms of metal accumulation in this process. Results demonstrated that, after 120 days growth, different times dilution of WV increased the shoot biomass of S. alfredii by 85.2%–148%. In addition, WV application significantly increased soil available Cd and Zn by lowing soil pH, which facilitated plant uptake. The optimal Cd and Zn phytoextraction occurred from the 100 times diluted WV (D100), which increased the Cd and Zn extraction by 188% and 164%, compared to CK. The 100 and 50 times diluted WV significantly increased soil total and available carbon, nitrogen and phosphorus, and enhancing enzyme activities of urease, acid phosphatase, invertase and protease by 10.1–21.4%, 29.1–42.7%,12.2–38.3% and 26.8–85.7%, respectively, compared to CK. High-throughput sequencing revealed that the D 100 significantly increased the bacterial diversity compared to CK. Soil bacterial compositions at phylum, family and genera level were changed by WV addition. Compared to CK, WV application increased the relative abundances of genus with plant growth promotion and metal mobilization function such as, Bacillus, Gemmatimonas, Streptomyces, Sphingomonas and Polycyclovorans, which was positively correlated to biomass, Cd/Zn concentrations and extractions by S. alfredii. Structural equation modeling analysis showed that, soil chemical properties, enzyme activities and bacterial abundance directly or indirectly contributed to the biomass promotion, Cd, and Zn extraction by S. alfredii. To sum up, WV improved phytoextraction efficiency by enhancing plant growth, Cd and Zn extraction and increasing soil nutrients, enzyme activities, and modifying bacterial community.
اظهر المزيد [+] اقل [-]