خيارات البحث
النتائج 1 - 10 من 574
Efficacy of Photocatalytic HEPA Filter on Reducing Bacteria and Fungi Spores in the Presence of UVC and UVA Lights
2021
Mousavi, Tahereh | Golbabaei, Farideh | Kohneshahri, Mehrdad Helmi | Pourmand, Mohammad Reza | Rezaie, Sassan | Hosseini, Mostafa | Karimi, Ali
The Indoor Air Quality (IAQ) of a hospital is very important to properly protect both patients and the staff against hospital infections. The present study aims at evaluating the efficiency of photocatalytic filters as well as the impact of important factors such as the type of UV wavelength (UVC, UVA) with different intensities and loading rates of TiO2 in HEPA Filters on reducing airborne microorganisms. For so doing, it has prepared photocatalytic filters by dipping them into 2% and 4% titanium dioxide suspensions as low and high loading, respectively. The experiments have been carried out on four species’ microorganisms, namely Epidermidis, Subtilis, Niger, and Penicillium. Fungi and bacteria suspensions have been prepared with concentrations of 106, 107 CFU/m3, respectively. In terms of microorganism removal, the efficiency of HEPA filters in both types of TiO2 loading and UVC and UVA radiations with two intensities at three times intervals (60, 90, and 120 min) have been investigated. Results show that lower penetration microorganism belong to PCO (TiO2 + UV), compared to photolysis (UV alone) at all intervals of UV radiation. TiO2 loading has no significant effect on percentage removal in all microorganisms. The percentage penetration of microorganisms under UVC radiation is lower than UVA radiation. Also, increasing the radiation intensity in both types of UV shows that it has higher effectiveness for removing bacteria and fungi. Therefore, the use of photocatalytic HEPA filters with UVC radiation can play an influential role in reduction of the microorganisms in different places such as hospitals, cleanrooms, etc.
اظهر المزيد [+] اقل [-]Opposite impact of DOM on ROS generation and photoaging of aromatic and aliphatic nano- and micro-plastic particles
2022
Cao, Runzi | Liu, Xinna | Duan, Jiajun | Gao, Bowen | He, Xiaosong | Nanthi Bolan, | Li, Yang
Dissolved organic matter (DOM) plays a significant role in the photochemical behavior of nano- and micro-plastic particles (NPs/MPs). We investigated the influence of DOM on the mechanism on the photoaging of NPs/MPs with different molecular structures under UV₃₆₅ irradiation in water. DOM components used in this study are mainly humic acid and fulvic acid. The results showed that DOM promoted the weathering of aliphatic NPs/MPs (polypropylene (PP)), but inhibited or had only a minor effect on the photoaging of aromatic NPs/MPs (polystyrene (PS) NPs/MPs, carboxyl-modified PS NPs, amino-modified PS NPs, and polycarbonate MPs). NPs with a large surface area may adsorb sufficient DOM on the particle surfaces through π-π interactions, which competes with NPs for photon absorption sites, thus, can delay the photoaging of PS NPs. Aromatic MPs may release phenolic compounds that quench •OH, thereby weakening the photoaging process. For aliphatic MPs, the detection of peracid, aldehyde, and ketone groups on the polymer surface indicated that DOM promoted weathering of PP MPs, which was primarily because the generation of •OH due to DOM photolysis may attack the polymer by C–C bond cleavage and hydrogen extraction reactions. This study provides insight into the UV irradiation weathering process of NPs/MPs of various compositions and structures, which are globally distributed in water.
اظهر المزيد [+] اقل [-]An inevitable but underestimated photoaging behavior of plastic waste in the aquatic environment: Critical role of nitrate
2022
Li, Fengjie | Zhai, Xue | Yao, Mingxuan | Bai, Xue
Photoaging is an important reaction for waste plastics in the aquatic environment and plays a key role in the lifetime of plastics. Nevertheless, when natural photosensitive substances such as nitrate participate in this process, the physiochemical changes in plastics and the corresponding reaction mechanisms are not well-understood. In this work, the photochemical behavior of polyethylene terephthalate (PET) bottles in deionized water and nitrate solution was systematically investigated under ultraviolet (UV) irradiation. The analyses of the surface physicochemical properties of the photoaged PET bottles indicated that, after 20 days of photo-irradiation, the presence of nitrate reduced the contact angle from 69.8 ± 0.9° to 60.0 ± 0.3°, and increased the O/C ratio from 0.23 to 0.32, respectively. The leaching rate of dissolved organic carbon (DOC), which was 0.0193 mg g⁻¹·day⁻¹ in nitrate solution, was twice that of 0.00941 mg g⁻¹·day⁻¹ in deionized water. Furthermore, fluorescence spectroscopy revealed that the increasing DOC had aromatic rings with hydroxyl on the side-chain formed after UV irradiation. The positive effect of nitrate on the degradation of PET bottles was mainly through the generation of hydroxyl radicals that were produced through the photolysis of nitrate. In addition, two-dimensional correlation spectroscopy analysis showed that the chain scission of PET plastics could be initiated by nitrate-induced ·OH attacking the carbon-oxygen bonds instead of forming peroxides with oxygen. This work elucidates the mechanism of photodegradation of plastics that was induced by nitrate and highlights the important role of natural photosensitive substances in the photoaging process of plastics.
اظهر المزيد [+] اقل [-]Facile nanoplastics formation from macro and microplastics in aqueous media
2022
Peller, Julie R. | Mezyk, Stephen P. | Shidler, Sarah | Castleman, Joe | Kaiser, Scott | Faulkner, Richard F. | Pilgrim, Corey D. | Wilson, Antigone | Martens, Sydney | Horne, Gregory P.
The immense production of plastic polymers combined with their discordancy with nature has led to vast plastic waste contamination across the geosphere, from the oceans to freshwater reservoirs, wetlands, remote snowpacks, sediments, air and multiple other environments. These environmental pollutants include microplastics (MP), typically defined as small and fragmented plastics less than 5 mm in size, and nanoplastics (NP), particles smaller than a micrometer. The formation of micro and nanoplastics in aqueous media to date has been largely attributed to fragmentation of plastics by natural (i.e., abrasion, photolysis, biotic) or industrial processes. We present a novel method to create small microplastics (≲ 5 μm) and nanoplastics in water from a wide variety of plastic materials using a small volume of a solubilizer liquid, such as n-dodecane, in combination with vigorous mixing. When the suspensions or solutions are subjected to ultrasonic mixing, the particle sizes decrease. Small micro- and nanoparticles were made from commercial, real world and waste (aged) polyethylene, polystyrene, polycarbonate and polyethylene terephthalate, in addition to other plastic materials and were analyzed using dark field microscopy, Raman spectroscopy and particle size measurements. The presented method provides a new and simple way to create specific size distributions of micro- and nanoparticles, which will enable expanded research on these plastic particles in water, especially those made from real world and aged plastics. The ease of NP and small MP formation upon initial mixing simulates real world environments, thereby providing further insight into the behavior of plastics in natural settings.
اظهر المزيد [+] اقل [-]Studying the combined influence of microplastics’ intrinsic and extrinsic characteristics on their weathering behavior and heavy metal transport in storm runoff
2022
Herath, Amali | Salehi, Maryam
The weathering and contaminant transport behavior of both primary (PMPs) and secondary microplastics (SMPs) are interrelated to their original physiochemical features and variations within the environment. This study examines the influence of PMPs' intrinsic characteristics (polymer structure and crystallinity) and SMPs' extrinsic features (surface oxidation and external sediments attachment) on the photodegradation kinetics, and subsequently Pb(II) and Zn(II) uptake from stormwater. For this purpose, high density polyethylene (HDPE) and low density polyethylene (LDPE) with different degrees of crystallinities were produced as PMPs, and their photodegradation behaviors were compared with original polymers. Furthermore, the SMPs generated by abrasion and surface oxidation of PMPs and the virgin PMPs underwent accelerated photodegradation, and the changes of their crystallinity, surface chemistry, and morphology were examined. Scanning electron microscopy (SEM) imaging and X-ray photoelectron (XPS) studies revealed the formation of cracks and different oxidized functionalities on MPs surface due to UV photodegradation. The vinyl and carbonyl indices calculated using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy demonstrated an elevated photodegradation rate for SMPs compared to the PMPs. Moreover, the Differential Scanning Colorimetry (DSC) demonstrated an increasing percentage of crystallinity in all MPs due to the photodegradation. The percent crystallinity of HDPE pellets increased after photodegradation from 49.8 to 62.6 and it increased from 17.2 to 38.9 for LDPE pellets respectively. The greater level of increase in crystallinity for LDPE in comparison to HDPE upon photodegradation was referred to as LDPE's greater amorphous content and branched structure. A greater level of metal uptake was obtained for photodegraded LDPE pellets as 2526 μg/m² for Pb(II) and 2028 μg/m² for Zn(II) respectively.
اظهر المزيد [+] اقل [-]The seasonal variations and potential sources of nitrous acid (HONO) in the rural North China Plain
2022
Song, Yifei | Zhang, Yuanyuan | Xue, Chaoyang | Liu, Pengfei | He, Xiaowei | Li, Xuran | Mu, Yujing
Nitrous acid (HONO), an essential precursor of hydroxyl radicals (OH) in the troposphere, plays an integral role in atmospheric photochemistry. However, potential HONO sources remain unclear, particularly in rural areas, where long-term (including seasonal) measurements are scarce. HONO and related parameters were measured at a rural site in the North China Plain (NCP) during the winter of 2017 and summer and autumn of 2020. The mean HONO level was higher in winter (1.79 ± 1.44 ppbv) than in summer (0.67 ± 0.50 ppbv) and autumn (0.83 ± 0.62 ppbv). Source analysis revealed that the heterogeneous conversion (including photo-enhanced conversion) of NO₂ on the ground surface dominated the daytime HONO production in the three seasons (43.1% in winter, 54.3% in summer, and 62.0% in autumn), and the homogeneous reaction of NO and OH contributed 37.8, 12.2, and 28.4% of the daytime HONO production during winter, summer, and autumn, respectively. In addition, the total contributions of other sources (direct vehicle emissions, particulate nitrate photolysis, NO₂ uptake and its photo-enhanced reaction on the aerosol surface) to daytime HONO production were less than 5% in summer and autumn and 12.0% in winter. Unlike winter and autumn, an additional HONO source was found in summer (0.45 ± 0.21 ppbv h⁻¹, 31.4% to the daytime HONO formation), which might be attributed to the HONO emission from the fertilized field. Among the primary radical sources (photolysis of HONO, O₃, and formaldehyde), HONO photolysis was dominant, with contributions of 82.6, 49.3, and 63.2% in winter, summer, and autumn, respectively. Our findings may aid in understanding HONO formation in different seasons in rural areas and may highlight the impact of HONO on atmospheric oxidation capacity.
اظهر المزيد [+] اقل [-]Photolytic degradation of novel polymeric and monomeric brominated flame retardants: Investigation of endocrine disruption, physiological and ecotoxicological effects
2022
Esther, Smollich | Malte, Büter | Gerhard, Schertzinger | Elke, Dopp | Bernd, Sures
Ecotoxicological effects of photolytic degradation mixtures of the two brominated flame retardants PolymericFR and Tetrabromobisphenol A-bis (2,3-dibrom-2-methyl-propyl) Ether (TBBPA-BDBMPE) have been studied in vitro and in vivo. Both substances were experimentally degraded separately by exposure to artificial UV-light and the resulting degradation mixtures from different time points during the UV-exposure were applied in ecotoxicological tests. The in vitro investigation showed no effects of the degraded flame retardants on the estrogenic and androgenic receptors via the CALUX (chemically activated luciferase gene expression) assay. Short-term exposures (up to 96 h) of Lumbriculus variegatus lead to temporary physiological reactions of the annelid. The exposure to degraded PolymericFR lead to an increased activity of Catalase, while the degradation mixture of TBBPA-BDBMPE caused increases of Glutathione-S-transferase and Acetylcholine esterase activities. Following a chronic exposure (28 d) of L. variegatus, no effects on the growth, reproduction, fragmentation and energy storage of the annelid were detected. The results indicate that the experimental degradation of the two flame retardants causes changes in their ecotoxicological potential. This might lead to acute physiological effects on aquatic annelids, which, however, do not affect the animals chronically according to our results.
اظهر المزيد [+] اقل [-]Effect of fulvic acid concentration levels on the cleavage of piperazinyl and defluorination of ciprofloxacin photodegradation in ice
2022
Li, Zhuojuan | Dong, Deming | Zhang, Liwen | Li, Yanchun | Guo, Zhiyong
Ice is an important physical and chemical sink for various pollutants in cold regions. The photodegradation of emerging fluoroquinolone (FQ) antibiotic contaminants with dissolved organic matter (DOM) in ice remains poorly understood. Here, the photodegradation of ciprofloxacin (CIP) and fulvic acid (FA) in different proportions as representative FQ and DOM in ice were investigated. Results suggested that the photodegradation rate constant of CIP in ice was 1.9 times higher than that in water. When CFA/CCIP ≤ 60, promotion was caused by FA sensitization. FA increased the formation rate of cleavage in the piperazine ring and defluorination products. When 60 < CFA/CCIP < 650, the effect of FA on CIP changed from promoting to inhibiting. When 650 ≤ CFA/CCIP ≤ 2600, inhibition was caused by both quenching effects of 143.9%–51.3% and light screening effects of 0%–48.7%. FA inhibited cleavage in the piperazine ring for CIP by the scavenging reaction intermediate of aniline radical cation in ice. When CFA/CCIP > 2600, the light screening effect was greater than the quenching effect. This work provides new insights into how DOM affects the FQ photodegradation with different concentration proportions, which is beneficial for understanding the environmental behaviors of fluorinated pharmaceuticals in cold regions.
اظهر المزيد [+] اقل [-]Detection of Neonicotinoids in agriculture soil and degradation of thiacloprid through photo degradation, biodegradation and photo-biodegradation
2022
Elumalai, Punniyakotti | Yi, Xiaohui | Chen, Zhenguo | Rajasekar, Aruliah | Brazil de Paiva, Teresa Cristina | Hassaan, Mohamed A. | Ying, Guang-guo | Huang, Mingzhi
The social and ecological influence of Neonicotinoids (NEOs) usage in agriculture sector is progressively higher. There are seven NEOs insecticides widely used for the insects control. Among the NEOs, thiacloprid (THD) was extensively used for insect control during crop cultivation. This study targets to analyse the contamination levels of NEOs in agricultural soil and identify photo-biodegradation of THD degradation using pure isolates and mixed consortium. The photo degradation (PD), biodegradation (BD) and photo-biodegradation (PBD) of THD were compared. The corn field agricultural soils were polluted by four NEOs, among them THD had greater contamination level (surface soil: 3901.2 ± 0.04 μg/g) and (sub-surface soil: 3988.6 ± 0.05 μg/g). Three soil free enriched bacterial strains following Bacillus atrophaeus (PB-2), Priestia megaterium (PB-3) (formerly known as Bacillus megaterium), and Peribacillus simplex (PB-4) (formerly known as Bacillus simplex) were identified by microbiological and molecular 16s rRNA gene sequencing. The PD, BD and PBD of THD were conducted and degradation rate was detected by instrument UPLC-MS-MS. The PBD process with blue-LEDs showed better THD degradation efficiency than PD and BD, where the specific THD degradation rate was 85 ± 0.2%, 87 ± 0.5%, and 89 ± 0.3%, respectively for PB-2, PB-3 and PB-4. Then, the photo-biodegradation performance is greater at 150, 175, 200 rpm, pH 7.0–9.0, and temperature 30–35 °C. After the PBD system deliver four intermediate metabolites, the THD degradation process maybe through nitro reduction, hydroxylation and oxidative cleavage pathway.
اظهر المزيد [+] اقل [-]ZIF-8 templated assembly of La3+-anchored ZnO distorted nano-hexagons as an efficient active photocatalyst for the detoxification of rhodamine B in water
2021
Karuppasamy, K. | Rabani, Iqra | Vikraman, Dhanasekaran | Bathula, Chinna | Theerthagiri, J. | Bose, Ranjith | Yim, Chang-Joo | Kathalingam, A. | Seo, Young-Soo | Kim, Hyun-Seok
The use of lanthanum-anchored zinc oxide distorted hexagon (La@ZnO DH) nanoclusters as an active material for the photodegradation of rhodamine B (Rh–B) dye via hydrogen bonding, electrostatic, and π-π interactions is examined herein. The active photocatalyst is derived from porous zeolite imidazole frameworks (ZIF-8) via a combined ultrasonication and calcination process. The distorted hexagon nanocluster morphology with controlled surface area is shown to provide excellent catalytic activity, chemical stability and demarcated pore volume. In addition, the low bandgap (3.57 eV) of La@ZnO DH is shown to expand the degradation of Rh–B under irradiation of UV light as compared to the pristine ZIF-8-derived ZnO photocatalyst due to inhibited recombination of electrons and holes. The outstanding physicochemical stability and enhanced performance of La@ZnO DH could be ascribed to the synergistic interaction among La3+ particles and the ZnO nanoclusters and provide a route for their utilization as a promising catalyst for the detoxification of Rh–B.
اظهر المزيد [+] اقل [-]