خيارات البحث
النتائج 1 - 10 من 129
Vertical Flow Constructed Wetlands fed with raw sewage: historical review and recent developments in France
2010
Liénard, A.
This paper relates to the 1st studies conducted in France on Vertical Flow Constructed Wetlands [VFCWs]. This process was originally designed by Käte Seidel according to her previous research done in Krefeld (Germany) the so-called Max Planck Institute Process [MPIP]. Based on measurements campaigns done successively in Saint Bohaire and Pont-Rémy, it was clearly established that the vertical flow 1st stage filters were significantly more efficient than the horizontal ones. This acknowledgement of success was positively used to design a treatment plant in Gensac la Pallue, still in operation after 23 years, with the special feature that the VFCW are fed with raw sewage. This attribute was then spread to the design of French VFCW systems. The main reasons which explain why representatives of small communities are so enthusiastic about feeding with raw sewage are presented. The state of the art of French VFCWs is detailed and scientific arguments which nowadays lead to new fields of application and a better understanding of small scale processes which occurs in these filters are also suggested.
اظهر المزيد [+] اقل [-]Interactive effects of groundwater level and salinity on soil respiration in coastal wetlands of a Chinese delta
2021
Cui, Hao | Bai, Junhong | Du, Shudong | Wang, Junjing | Keculah, Ghemelee Nitta | Wang, Wei | Zhang, Guangliang | Jia, Jia
Coastal wetland soils serve as a great C sink or source, which highly depends on soil carbon flux affected by complex hydrology in relation to salinity. We conducted a field experiment to investigate soil respiration of three coastal wetlands with different land covers (BL: bare land; SS: Suaeda salsa; PL: Phragmites australis) from May to October in 2012 and 2013 under three groundwater tables (deeper, medium, and shallower water tables) in the Yellow River Delta of China, and to characterize the spatial and temporal changes and the primary environmental drivers of soil respiration in coastal wetlands. Our results showed that the elevated groundwater table decreased soil CO₂ emissions, and the soil respiration rates at each groundwater table exhibited seasonal and diurnal dynamics, where significant differences were observed among coastal wetlands with different groundwater tables (p < 0.05), with the average CO₂ emission of 146.52 ± 13.66 μmol m⁻²s⁻¹ for deeper water table wetlands, 105.09 ± 13.48 μmol m⁻²s⁻¹ for medium water table wetlands and 54.32 ± 10.02 μmol m⁻²s⁻¹ for shallower water table wetlands. Compared with bare land and Suaeda salsa wetlands, higher soil respiration was observed in Phragmites australis wetlands. Generally, soil respiration was greatly affected by salinity and soil water content. There were significant correlations between groundwater tables, electrical conductivity and soil respiration (p < 0.05), indicating that soil respiration in coastal wetlands was limited by electrical conductivity and groundwater tables and soil C sink might be improved by regulating water and salt conditions. We have also observed that soil respiration and temperature showed an exponential relationship on a seasonal scale. Taking into consideration the changes in groundwater tables and salinity that might be caused by sea level rise in the context of global warming, we emphasize the importance of groundwater level and salinity in the carbon cycle process of estuarine wetlands in the future.
اظهر المزيد [+] اقل [-]Sequential fractionation and plant uptake of As, Cu, and Zn in a contaminated riparian wetland
2021
Zhang, Huijuan | Wang, Qi | Xu, Qijing | Xu, Wumei | Yang, Silin | Liu, Xue | Ma, Lena Q.
Sediment serves as a sink for metals, thus it is critical to assess its contamination and associated risk. A typical riparian wetland close to a Zn-smelting operation in karst areas in southwest China was investigated. Sediment and reed plant (Phragmites australis) samples from wet and dry seasons were analyzed for total As, Cu, and Zn concentrations. Metal pollution in the sediment was assessed based on geoaccumulation index (Igₑₒ). Further, metals in the sediment were fractionated into exchangeable, water and acid-soluble, reducible, oxidizable, and residual fractions based on the BCR sequential extraction. The results showed that the As, Cu, and Zn concentrations in the sediment were significantly higher than the background values (740–4081, 96–228, and 869–3331 vs. 10, 22, and 70 mg kg⁻¹). With the Igₑₒ being 10–17, the data indicate that the sediment was highly-polluted. While total As, Cu and Zn in the sediment increased from dry to wet season, their available concentrations decreased except Cu. With 62–94% of As, Cu, and Zn being in the residual fraction, metal availability in the sediment was low based on fractionation data. The data are consistent with low metal uptake by reed as their concentration ratios in plant roots to the sediment were 0.01–0.32. The results suggest that the riparian sediment was highly-polluted with As, Cu and Zn, but showing low metal availability and limited plant uptake.
اظهر المزيد [+] اقل [-]Clonal integration in Phragmites australis alters soil microbial communities in an oil-contaminated wetland
2020
Xue, Wei | Wang, Wanli | Yuan, Qing-Ye | Yu, Fei-Hai
Clonal plants can share information and resources among connected ramets (asexual individuals). Such clonal integration can promote ramet growth, which may further influence soil microbial communities in the rooting zone. Crude oil contamination can negatively affect plant growth and alter soil microbial community composition. However, we still know little about how clonal integration affects soil microbial communities, especially under crude oil contamination. In a coastal wetland, ramets of the rhizomatous plant Phragmites australis in circular plots (60 cm in diameter) were subjected to 0, 5 and 10 mm depth of crude oil, and the rhizomes at the edge of the plots were either severed (preventing clonal integration) or left intact (allowing clonal integration). After three years of treatment, we analysed in each plot soil physiochemical properties and soil microbial community composition. The alpha-diversity of the soil microbial communities did not differ between intact and severed plots, but was overall lower in 10-mm than in 0-mm and 5-mm oil plots. Considering all three oil treatments together, soil microbial community dissimilarity (beta-diversity) was positively correlated with soil property distance in both severed and intact plots. Considering the three oil treatments separately, this pattern was also observed in 10-mm oil plots, but not in 0-mm or 5-mm oil plots. The soil microbial community composition was more sensitive to the oil addition than to the clonal integration. Moreover, the relative abundance of the nitrogen-cycling bacterial taxa was lower in intact than in severed plots, and that of the oil-degrading bacterial taxa increased with increasing oil-addition levels. Our results indicate that clonal integration and oil contamination can influence soil microbial communities independently through changing the relative abundance of the component bacteria taxa, which has important implications for ecosystem functions of the soil food web mediated by clonal plants.
اظهر المزيد [+] اقل [-]Dissolved organic carbon content and characteristics in relation to carbon dioxide partial pressure across Poyang Lake wetlands and adjacent aquatic systems in the Changjiang basin
2016
Wang, Huaxin | Jiao, Ruyuan | Wang, Fang | Zhang, Lu | Yan, Weijin
Dissolved organic carbon (DOC) plays diverse roles in carbon biogeochemical cycles. Here, we explored the link between DOC and pCO2 using high-performance size-exclusion chromatography (HPSEC) with UV254 detection and excitation emission matrix (EEM) fluorescence spectroscopy to determine the molecular weight distribution (MW) and the spectral characteristics of DOC, respectively. The relationship between DOC and pCO2 was investigated in the Poyang Lake wetlands and their adjacent aquatic systems. The results indicated significant spatial variation in the DOC concentrations, MW distributions, and pCO2. The DOC concentration was higher in the wetlands than in the rivers and lakes. pCO2 was high in wetlands in which the dominant vegetation was Phragmites australis, whereas it was low in wetlands in which Carex tristachya was the dominant species. DOC was divided into five fractions according to MW, as follows: super-low MW (SLMW, <1 kDa); low MW (LMW, 1–2.5 kDa); intermediate MW (IMW, 2.5–3.5 kDa); high MW (HMW, 3.5–6 kDa); and super-high MW (SMW, > 40 kDa). Rivers contained high proportions of HMW and extremely low amounts of SLMW, whereas wetlands had relatively high proportions of SLMW. The proportion of SMW (SMWp) was particularly high in wetlands. We found that pCO2 significantly positively correlated with the proportion of IMW, and significantly negatively correlated with SMWp. These data improve our understanding of the MW of bioavailable DOC and its conversion to CO2. The present results demonstrate that both the content and characteristics of DOC significantly affect pCO2. pCO2 and DOC must be studied further to help understanding the role of the wetland on the regional CO2 budget.
اظهر المزيد [+] اقل [-]Root biomass production in populations of six rooted macrophytes in response to Cu exposure: Intra-specific variability versus constitutive-like tolerance
2014
Marchand, L. | Nsanganwimana, F. | Lamy, J.B. | Quintela-Sabaris, C. | Gonnelli, C. | Colzi, I. | Fletcher, T. | Oustrière, N. | Kolbas, A. | Kidd, P. | Bordas, F. | Newell, P. | Alvarenga, P. | Deletic, A. | Mench, M.
Intra-specific variability of root biomass production (RP) of six rooted macrophytes, i.e. Juncus effusus, Phragmites australis, Schoenoplectus lacustris, Typha latifolia, Phalaris arundinacea, and Iris pseudacorus grown from clones, in response to Cu exposure was investigated. Root biomass production varied widely for all these macrophytes in control conditions (0.08 μM) according to the sampling site. Root biomass production of T. latifolia and I. pseudacorus in the 2.5–25 μM Cu range depended on the sampling location but not on the Cu dose in the growth medium. For P. australis, J. effusus, S. lacustris, and P. arundinacea, an intra-specific variability of RP depending on both the sampling location and the Cu-dose was evidenced. This intra-specific variability of RP depending on the sampling location and of Cu-tolerance for these last four species suggests that Cu constitutive tolerance for all rooted macrophytes is not a species-wide trait but it exhibits variability for some species.
اظهر المزيد [+] اقل [-]Nitrous oxide emissions from Phragmites australis-dominated zones in a shallow lake
2012
Yang, Zhifeng | Zhao, Ying | Xia, Xinghui
Nitrous oxide (N₂O) emissions from Phragmites australis (reed) – dominated zones in Baiyangdian Lake, the largest shallow lake of Northern China, were investigated under different hydrological conditions with mesocosm experiments during the growing season of reeds. The daily and monthly N₂O emissions were positively correlated with air temperature and the variation of aboveground biomass of reeds (p < 0.05), respectively. The N₂O emissions from reeds were about 45.8–52.8% of that from the sediments. In terms of the effect of hydrological conditions, N₂O emissions from the aquatic-terrestrial ecotone were 9.4–26.1% higher than the submerged zone, inferring that the variation of water level would increase N₂O emissions. The annual N₂O emission from Baiyangdian Lake was estimated to be about 114.2 t. This study suggested that N₂O emissions from shallow lakes might be accelerated by the climate change as it has increased air temperature and changed precipitation, causing the variation of water level.
اظهر المزيد [+] اقل [-]Uptake of potentially toxic elements and polycyclic aromatic hydrocarbons from the hydromorphic soil and their cellular effects on the Phragmites australis
2022
Minkina, Tatiana | Fedorenko, Aleksei | Nevidomskaya, Dina | Fedorenko, Grigoriy | Pol'shina, Tatiana | Sushkova, Svetlana | Chaplygin, Victor | Beschetnikov, Vladimir | Dudnikova, Tamara | Chernikova, Natalia | Lychagin, Mikhail | Rajput, Vishnu D.
The current study provides an information on the combined effect of pollution with potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) in hydromorphic soils on the accumulation, growth, functional and morphological-anatomical changes of macrophyte plant, i.e., Phragmites australis Cav., as well as information about their bioindication status on the example of small rivers of the Azov basin. The territory of the lower reaches of the Kagalnik River is one of the small rivers of the Eastern Azov region was examined with different levels of PTEs contamination in soils, where the excess of the lithosphere clarkes and maximum permissible concentrations (MPC) for Mn, Cr, Zn, Pb, Cu, and Cd were found. The features of the 16 priority PAHs quantitative and qualitative composition in hydromorphic soils and P. australis were revealed. The influence of soil pollution on accumulation in P. australis, as well as changes in the morphological parameters were shown. It has been observed that morphometric changes in P. australis at sites experiencing the сontamination and salinity are reflected with the changes in the ultrastructure of plastids, mitochondria, and EPR elements of plant cells. PTEs accumulated in inactive organs and damaged cell structures. At the same time, PAHs penetrated through the biomembranes and violated their integrity, increased permeability, resulted cell disorganization, meristem, and conductive tissues of roots. The nature and extent of the structural alterations found are dependent on the type and extent of pollution in the examined regions and can be utilized as bioindicators for evaluating the degree of soil phytotoxicity characterized by the accumulation of PTE and PAHs.
اظهر المزيد [+] اقل [-]O2 distribution and dynamics in the rhizosphere of Phragmites australis, and implications for nutrient removal in sediments
2021
Li, Cai | Ding, Shiming | Ma, Xin | Chen, Musong | Zhong, Zhilin | Zhang, Yi | Ren, Mingyi | Zhang, Min | Yang, Liyuan | Rong, Nan | Wang, Yan
Root-triggered microscale variations in O₂ distribution in the rhizosphere of young Phragmites australis are important for nutrient removal in sediments. In this study, the micro-scale O₂ dynamics and the small-scale changes of soluble reactive phosphorus (SRP) and ammonium (NH₄⁺) in the rhizosphere of P. australis were investigated using planar optodes and high-resolution dialysis (HR-Peeper), respectively. Results suggested that root O₂ leakage has a highly variable distribution depending on the stage of root growth, the site of O₂ leakage gradually shift from the entire emerging main roots to the main root tip and subsequently shifted the emerging lateral roots. The O₂ concentration increased in the rhizosphere with increasing light intensity and O₂ levels in the overlying water. Continuous O₂ release from the lateral roots causes the formation of iron plaque on the surface of lateral roots, which reduce the mobility of P by adsorption of iron plaque in the rhizosphere. The oscillation of oxic-anoxic root zones improves nitrogen removal through the processes of anammox, heterotrophic denitrification and nitrification. This work from the micro-scale demonstrates that the O₂ concentration is the spatio-temporal variations in the rhizosphere, and it presents an important role for nutrient removal in sediments.
اظهر المزيد [+] اقل [-]Use of nest bundles to monitor agrochemical exposure and effects among cavity nesting pollinators
2021
Peterson, Eric M. | Thompson, Kelsey N. | Shaw, Katherine R. | Tomlinson, Caleb | Longing, Scott D. | Smith, Philip N.
Cavity nesting bees are proficient and important pollinators that can augment or replace honey bee pollination services for some crops. Relatively little is known about specific pesticide concentrations present in cavity nesting insect reed matrices and associated potential risks to cavity nesting bees. Nesting substrates (Phragmites australis reeds in bundles) were deployed in an agriculturally intensive landscape to evaluate colonization and agrochemical exposure among cavity nesting pollinators over two consecutive field seasons. Composition of insect species colonizing reeds within nest bundles varied considerably; those placed near beef cattle feed yards were dominated by wasps (93% of the total number of individuals occupying reed nest bundles), whereas nest bundles deployed in cropland-dominated landscapes were colonized primarily by leaf cutter bees (71%). All nesting/brood matrices in reeds (mud, leaves, brood, pollen) contained agrochemicals. Mud used in brood chamber construction at feed yard sites contained 21 of 23 agrochemicals included in analysis and >70% of leaf substrate stored in reeds contained at least one agrochemical. Moxidectin was most frequently detected across all reed matrices from feed yard sites, and moxidectin concentrations in nonviable larvae were more than four times higher than those quantified in viable larvae. Agrochemical concentrations in leaf material and pollen were also quantified at levels that may have induced toxic effects among developing larvae. To our knowledge, this is the first study to characterize agrochemical concentrations in multiple reed matrices provisioned by cavity-nesting insects. Use of nest bundles revealed that cavity nesting pollinators in agriculturally intensive regions are exposed to agrochemicals during all life stages, at relatively high frequencies, and at potentially lethal concentrations. These results demonstrate the utility of nest bundles for characterizing risks to cavity nesting insects inhabiting agriculturally intensive regions.
اظهر المزيد [+] اقل [-]