خيارات البحث
النتائج 1 - 10 من 71
Le deperissement des forets en Republique Federale d' Allemagne: cas particulier de la Foret Noire [pollution, pluie acide].
1985
Schroeter H.
Surveillance du deperissement des forets en Belgique [pluie acide].
1985
Laitat E. | Impens R.
Diurnal variations of aerosol concentrations inside and above a young spruce stand: modelling and measurements.
1986
Wiman B.L.B.
Long-term effects of air pollution on spruce forests in the Tatra Mts. - ozone and vegetation studies
2002
Godzik, B. (Polish Academy of Sciences, Krakow (Poland). Institute of Botany) | Fleischer, P. | Grodzinska, K.
Wet-deposited - sulphur and nitrogen pollutants and ambient ozone are important anthropogenic factors affecting forest health. Regular assessment of chemistry of throughfall and precipitation water based on two-week sampling started in 1997. Passive samplers for detection of ozone concentration have been exposed on a network of monitoring stations during vegetation periods since 1998. In addition, in selected locations, UV absorption monitors for continuous O3 measurements were installed in 1999
اظهر المزيد [+] اقل [-]Three-dimensional model of magnetic susceptibility in forest topsoil: An indirect method to discriminate contaminant migration
2021
Łukasik, Adam | Szuszkiewicz, Marcin | Wanic, Tomasz | Gruba, Piotr
Soil magnetic susceptibility (MS) is an important parameter in pollution studies owing to its relationship with atmospheric deposition, and the concomitance of technogenic magnetic particles (TMPs) with potentially toxic elements (PTEs), Fe and Mn. In this study, we performed a detailed soil study under tree canopies for a forest area with high historical TMP-bearing industrial dust deposition. The technogenic sources of magnetic signals in topsoil were analyzed via scanning electron microscope electron dispersive spectroscopy (SEM/EDS), while the minor role of geogenic sources was obtained from soil profile analysis. To our knowledge, this is the first study to show soil TMP distribution in three dimensional (3D) space. In addition, using the data from 275 soil cores and 8250 individual measurements, 3D maps of MS for four tree species were plotted. There is a noticeable difference between coniferous (spruce and pine) and deciduous (beech and oak) species regarding depth of maximum concentration of magnetic particles in the topsoil. For beech and oak, maximum MS values were measured at 3 cm depth; pine and spruce, maximum MS values were measured at 5 cm depth. However, no significant differences were found among tree species in terms of mean MS or PTE contents. This suggests that there is little different among tree species in terms of dust capture over their life span. Significant correlations between MS and other parameters (PTEs and organic matter contents) present new possibilities for spatial 3D analysis of topsoil horizons.
اظهر المزيد [+] اقل [-]Physico-chemical properties and biological effects of diesel and biomass particles
2016
Longhin, Eleonora | Gualtieri, M. (Maurizio) | Capasso, Laura | Bengalli, Rossella | Mollerup, Steen | Holme, Jørn A. | Øvrevik, Johan | Casadei, Simone | Di Benedetto, Cristiano | Parenti, Paolo | Camatini, Marina
Diesel combustion and solid biomass burning are the major sources of ultrafine particles (UFP) in urbanized areas. Cardiovascular and pulmonary diseases, including lung cancer, are possible outcomes of combustion particles exposure, but differences in particles properties seem to influence their biological effects.Here the physico-chemical properties and biological effects of diesel and biomass particles, produced under controlled laboratory conditions, have been characterized. Diesel UFP were sampled from a Euro 4 light duty vehicle without DPF fuelled by commercial diesel and run over a chassis dyno. Biomass UFP were collected from a modern automatic 25 kW boiler propelled by prime quality spruce pellet. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of both diesel and biomass samples showed aggregates of soot particles, but in biomass samples ash particles were also present. Chemical characterization showed that metals and PAHs total content was higher in diesel samples compared to biomass ones.Human bronchial epithelial (HBEC3) cells were exposed to particles for up to 2 weeks. Changes in the expression of genes involved in xenobiotic metabolism were observed after exposure to both UFP already after 24 h. However, only diesel particles modulated the expression of genes involved in inflammation, oxidative stress and epithelial-to-mesenchymal transition (EMT), increased the release of inflammatory mediators and caused phenotypical alterations, mostly after two weeks of exposure.These results show that diesel UFP affected cellular processes involved in lung and cardiovascular diseases and cancer. Biomass particles exerted low biological activity compared to diesel UFP. This evidence emphasizes that the study of different emission sources contribution to ambient PM toxicity may have a fundamental role in the development of more effective strategies for air quality improvement.
اظهر المزيد [+] اقل [-]Effects of sewage sludge addition to Norway spruce seedlings on nitrogen availability and soil fauna in clear-cut areas
2013
Nieminen, Jouni K. | Räisänen, Mikko
Anaerobically digested and composted sewage sludge (CSS) has been suggested to be a slow-release fertilizer in forestry and an alternative to quick-release inorganic fertilizers. The effects of CSS with or without added carbohydrate on inorganic nitrogen availability and on soil animals were tested in two Norway spruce plantations. Half of the seedlings were individually fertilized with CSS, and the rest were left as controls. Solid sucrose was added to half of the fertilized and untreated seedlings. Soil samples were taken in the autumn in the first and the second year after the treatments. CSS increased soil NH4–N (2100%), the proportion of soil NO3–N, and the N concentration of spruce needles. CSS greatly reduced the abundances of enchytraeids, tardigrades and collembolans, but increased the proportion and abundance of bacterial-feeding nematodes irrespective of carbohydrate addition. A better stabilization method needs to be developed before CSS can be used as a forest fertilizer.
اظهر المزيد [+] اقل [-]Stable isotope signatures reflect competitiveness between trees under changed CO2/O3 regimes
2010
Grams, T.E.E. | Matyssek, R.
Here we synthesize key findings from a series of experiments to gain new insight on inter-plant competition between juvenile beech (Fagus sylvatica) and spruce (Picea abies) under the influence of increased O3 and CO2 concentrations. Competitiveness of plants was quantified and mechanistically interpreted as space-related resource investments and gains. Stable isotopes were addressed as temporal integrators of plant performance, such as photosynthesis and its relation to water use and nitrogen uptake. In the weaker competitor, beech, efficiency in space-related aboveground resource investment was decreased in competition with spruce and positively related to Δ13C, as well as stomatal conductance, but negatively related to δ18O. Likewise, our synthesis revealed that strong belowground competition for water in spruce was paralleled in this species by high N assimilation capacity. We suggest combining the time-integrative potential of stable isotopes with space-related investigations of competitiveness to accomplish mechanistic understanding of plant competition for resources. Combination of space-related concepts of competitiveness with stable isotopes has potential to clarify mechanisms of competition.
اظهر المزيد [+] اقل [-]Soil type affects migration pattern of airborne Pb and Cd under a spruce-beech forest of the UN-ECE integrated monitoring site Zöbelboden, Austria
2010
Kobler, Johannes | Fitz, Walter J. | Dirnböck, Thomas | Mirtl, Michael
Anthropogenic trace element emissions have declined. However, top soils all over the world remain enriched in trace elements. We investigated Pb and Cd migration in forest soils of a remote monitoring site in the Austrian limestone Alps between 1992 and 2004. Large spatial variability masked temporal changes in the mineral soil of Lithic Leptosols (Skeltic), whereas a significant reduction of Pb concentrations in their forest floors occurred. Reductions of concentrations in the less heterogeneous Cambisols (Chromic) were significant. In contrast, virtually no migration of Pb and Cd were found in Stagnosols due to their impeded drainage. Very low element concentrations (<1 μg l−1) in field-collected soil solutions using tension lysimeters (0.2 μm nylon filters) imply that migration largely occurred by preferential flow as particulate-bound species during intensive rainfall events. Our results indicate that the extent of Pb and Cd migration in soils is largely influenced by soil type. Comparison between soil solid phase and soil solution concentrations imply that trace element migration largely occurred by preferential flow as particulate-bound species.
اظهر المزيد [+] اقل [-]Root uptake of lead by Norway spruce grown on 210Pb spiked soils
2009
Hovmand, M.F. | Nielsen, S.P. | Johnsen, I.
The root uptake of lead (Pb) by trees and the transfer of Pb by leaf litter deposition to the forest floor were investigated through a pot experiment with Norway spruce. Natural Pb and radio isotopic lead (210Pb) were determined in needles and twigs and in the pot soil spiked with 210Pb. Calculations of the specific activity in plant material and in the supporting pot soil showed that less than 2% of the Pb content of needles and twigs originates from root uptake and approximately 98% are deposited from the atmosphere. Atmospheric Pb has declined by a factor of 7 from 1980 to 2007 but is still a major pathway of Pb to vegetation and topsoils. The conclusion from the experiment is that the internal circulation of Pb through root uptake, translocation and litterfall, gives an insignificant input of Pb to the forest floor compared to atmospheric deposition.
اظهر المزيد [+] اقل [-]