خيارات البحث
النتائج 1 - 10 من 79
Terrestrial dissolved organic matter source affects disinfection by-product formation during water treatment and subsequent toxicity النص الكامل
2021
Franklin, Hannah M. | Doederer, Katrin | Neale, Peta A. | Hayton, Joshua B. | Fisher, Paul | Maxwell, Paul | Carroll, Anthony R. | Burford, Michele A. | Leusch, Frederic D.L.
Restoring woody vegetation to riparian zones helps to protect waterways from excessive sediment and nutrient inputs. However, the associated leaf litter can be a major source of dissolved organic matter (DOM) leached into surface waters. DOM can lead to the formation of disinfection by-products (DBPs) during drinking water treatment. This study investigated the DBPs formed during chlorination of DOM leached from leaf litter and assessed the potential toxicity of DBPs generated. We compared the leachate of two native Australian riparian trees, Casuarina cunninghamiana and Eucalyptus tereticornis, and a reservoir water source from a catchment dominated by Eucalyptus species. Leachates were diluted to dissolved organic carbon concentrations equivalent to the reservoir (~9 mg L⁻¹). E. tereticornis leachates produced more trihalomethanes (THMs), haloacetic acids (HAAs), and haloketones after chlorination, while C. cunninghamiana produced more chloral hydrate and haloacetonitriles. Leachate from both species produced less THMs and more HAAs per mole of carbon than reservoir water. This may be because reservoir water had more aromatic, humic characteristics while leaf leachates had relatively more protein-like components. Using in vitro bioassays to test the mixture effects of all chemicals, chlorinated E. tereticornis leachate induced oxidative stress in HepG2 liver cells and bacterial toxicity more frequently and at lower concentrations than C. cunninghamiana and reservoir water. Overall, this study has shown that the DOM leached from litter of these species has the potential to generate DBPs and each species has a unique DBP profile with differing bioassay responses. E. tereticornis may pose a relatively greater risk to drinking water than C. cunninghamiana as it showed greater toxicity in bioassays. This implies tree species should be considered when planning riparian zones to ensure the benefits of vegetation to waterways are not offset by unintended increased DBP production and associated toxicity following chlorination at downstream drinking water intakes.
اظهر المزيد [+] اقل [-]Litter decomposition can be reduced by pesticide effects on detritivores and decomposers: Implications for tropical stream functioning النص الكامل
2021
Cornejo, Aydeé | Pérez Ovalle, Javier | López-Rojo, Naiara | García, Gabriela | Perez, Edgar | Guerra, Alisson | Nieto, Carlos | Boyero, Luz
Understanding which factors affect the process of leaf litter decomposition is crucial if we are to predict changes in the functioning of stream ecosystems as a result of human activities. One major activity with known consequences on streams is agriculture, which is of particular concern in tropical regions, where forests are being rapidly replaced by crops. While pesticides are potential drivers of reduced decomposition rates observed in agricultural tropical streams, their specific effects on the performance of decomposers and detritivores are mostly unknown. We used a microcosm experiment to examine the individual and joint effects of an insecticide (chlorpyrifos) and a fungicide (chlorothalonil) on survival and growth of detritivores (Anchytarsus, Hyalella and Lepidostoma), aquatic hyphomycetes (AH) sporulation rate, taxon richness, assemblage structure, and leaf litter decomposition rates. Our results revealed detrimental effects on detritivore survival (which were mostly due to the insecticide and strongest for Hyalella), changes in AH assemblage structure, and reduced sporulation rate, taxon richness and microbial decomposition (mostly in response to the fungicide). Total decomposition was reduced especially when the pesticides were combined, suggesting that they operated differently and their effects were additive. Importantly, effects on decomposition were greater for single-species detritivore treatments than for the 3-species mixture, indicating that detritivore species loss may exacerbate the consequences of pesticides of stream ecosystem functioning.
اظهر المزيد [+] اقل [-]Repeated insecticide pulses increase harmful effects on stream macroinvertebrate biodiversity and function النص الكامل
2021
Wiberg-Larsen, Peter | Nørum, Ulrik | Rasmussen, Jes Jessen
Repeated insecticide pulses increase harmful effects on stream macroinvertebrate biodiversity and function النص الكامل
2021
Wiberg-Larsen, Peter | Nørum, Ulrik | Rasmussen, Jes Jessen
We exposed twelve mesocosm stream channels and four instream channels to one, two, and four pulses of the insecticide lambda-cyhalothrin (0.1 μg L⁻¹) applied at two day intervals, each pulse lasting 90 min. Unexposed controls were included. We monitored macroinvertebrate taxonomic composition in the channels and in deployed leaf packs one day before and 29 days after the first exposure. Further, we measured drift in and out of the channels and leaf litter decomposition. Lambda-cyhalothrin exposures induced significantly increased drift in both experiments especially for Gammarus pulex, Amphinemura standfussi, and Leuctra spp. Macroinvertebrate taxonomic composition increasingly changed with increasing number of lambda-cyhalothrin exposures being most pronounced in the mesocosm channels. Further, leaf decomposition significantly decreased with increasing number of exposures in the mesocosm channels. Our study showed that species with predicted highest sensitivity to lambda-cyhalothrin were primary drivers of significant changes in taxonomic composition lasting for at least one month despite continuous recolonization of exposed channels from upstream parts of the natural stream and from the water inlet in the mesocosm channels. The overall results highlight the importance of sequential exposures to insecticides for understanding the full impact of insecticides on macroinvertebrates at the community level in streams.
اظهر المزيد [+] اقل [-]Repeated insecticide pulses increase harmful effects on stream macroinvertebrate biodiversity and function
Foliar mercury content from tropical trees and its correlation with physiological parameters in situ النص الكامل
2018
Teixeira, Daniel C. | Lacerda, Luiz D. | Silva-Filho, Emmanoel V.
The terrestrial biogeochemical cycle of mercury has been widely studied because, among other causes, it presents a global distribution and harmful biotic interactions. Forested ecosystems shows great concentrations from Hg and Litterfall is known as the major contributor to the fluxes at the soil/air interface, through the superficial adsorption on the leaves and by the gas exchange of the stomatal pores. The understanding of which processes control the stage of Hg cycle in these ecosystems is still not totally clear. The influences of physiological and morphological parameters were tested against the Hg concentrations in the leaves of 14 endemic species of an evergreen tropical forest in south-eastern Brazil, and an exotic species from Platanus genus. Pathways were studied through leaf areas and growing tree parameters, where maximum rate of net photosynthesis (Pnmax), transpiration rate (E), stomatal conductance (Gs) were examined. The results obtained in situ indicated a positive correlation between Pnmax and the Hg concentration; Cedrela fissilis and Croton floribundus were the most sensitive species to the accumulation of Hg and the most photosynthetically active in this study. The primary productivity from Tropical forest should be a proxy of Hg deposition from atmosphere to soil, retained there while forests stand up, representing an environmental service of sequestration of this global pollutant. Therefore, forests and trees with great photosynthetic potential should be considered in predictions, budgets and non-geological soil content regarding the global Hg cycle.
اظهر المزيد [+] اقل [-]Does long-term fungicide exposure affect the reproductive performance of leaf-shredders? A partial life-cycle study using Hyalella azteca النص الكامل
2017
Baudy, Patrick | Zubrod, Jochen P. | Konschak, Marco | Weil, Mirco | Schulz, Ralf | Bundschuh, Mirco
Leaf-shredding amphipods play a critical role in the ecosystem function of leaf litter breakdown, a key process in many low order streams. Fungicides, however, may adversely influence shredders' behavior and the functions they provide, while there is only limited knowledge concerning effects on their reproductive performance. To assess the latter, a semi-static 56-day partial life-cycle bioassay using the model shredder Hyalella azteca (n = 30) was performed applying two environmentally relevant concentrations of a model fungicide mixture (i.e., 5 and 25 μg/L) composed of five fungicides with different modes of toxic action. Variables related to the food processing (leaf consumption and feces production), growth (body length and dry weight), energy reserves (lipid content), and reproduction (amplexus pairs, number and length of offspring) were determined to understand potential implications in the organisms' energy budget. While the fungicides did not affect leaf consumption, both fungicide treatments significantly reduced amphipods' feces production (∼20%) compared to the control. This observation suggests an increased food utilization to counteract the elevated and stress-related energy demand: although growth as well as energy reserves were unaffected, amplexus pairs were less frequently observed in both fungicide treatments (∼50–100%) suggesting a tradeoff regarding energy allocation favoring the maintenance of fundamental functions at the organism level over reproduction. As a result, the time to release of first offspring was delayed in both fungicide treatments (7 and 14 days) and the median number of offspring was significantly lower in the 25-μg/L treatment (100%), whereas offspring length remained unaffected. The results of this study thus indicate that chronic fungicide exposures can negatively impact shredders' reproductive performance. This may translate into lower abundances and thus a reduced contribution to leaf litter breakdown in fungicide-impacted streams with potentially far-reaching consequences for detritus-based food webs.
اظهر المزيد [+] اقل [-]Effects of a common insecticide on wetland communities with varying quality of leaf litter inputs النص الكامل
2017
Stoler, A.B. | Mattes, B.M. | Hintz, W.D. | Jones, D.K. | Lind, L. | Schuler, M.S. | Relyea, R.A.
Chemical contamination of aquatic systems often co-occurs with dramatic changes in surrounding terrestrial vegetation. Plant leaf litter serves as a crucial resource input to many freshwater systems, and changes in litter species composition can alter the attributes of freshwater communities. However, little is known how variation in litter inputs interacts with chemical contaminants. We investigated the ecological effects resulting from changes in tree leaf litter inputs to freshwater communities, and how those changes might interact with the timing of insecticide contamination. Using the common insecticide malathion, we hypothesized that inputs of nutrient-rich and labile leaf litter (e.g., elm [Ulmus spp.] or maple [Acer spp.]) would reduce the negative effects of insecticides on wetland communities relative to inputs of recalcitrant litter (e.g., oak [Quercus spp.]). We exposed artificial wetland communities to a factorial combination of three litter species treatments (elm, maple, and oak) and four insecticide treatments (no insecticide, small weekly doses of 10 μg L−1, and either early or late large doses of 50 μg L−1). Communities consisted of microbes, algae, snails, amphipods, zooplankton, and two species of tadpoles. After two months, we found that maple and elm litter generally induced greater primary and secondary production. Insecticides induced a reduction in the abundance of amphipods and some zooplankton species, and increased phytoplankton. In addition, we found interactive effects of litter species and insecticide treatments on amphibian responses, although specific effects depended on application regime. Specifically, with the addition of insecticide, elm and maple litter induced a reduction in gray tree frog survival, oak and elm litter delayed tree frog metamorphosis, and oak and maple litter reduced green frog tadpole mass. Our results suggest that attention to local forest composition, as well as the timing of pesticide application might help ameliorate the harmful effects of pesticides observed in freshwater systems.
اظهر المزيد [+] اقل [-]Decomposition characteristics of three different kinds of aquatic macrophytes and their potential application as carbon resource in constructed wetland النص الكامل
2017
Wu, Suqing | He, Shengbing | Zhou, Weili | Gu, Jianya | Huang, Jungchen | Gao, Lei | Zhang, Xu
Decomposition of aquatic macrophytes usually generates significant influence on aquatic environment. Study on the aquatic macrophytes decomposition may help reusing the aquatic macrophytes litters, as well as controlling the water pollution caused by the decomposition process. This study verified that the decomposition processes of three different kinds of aquatic macrophytes (water hyacinth, hydrilla and cattail) could exert significant influences on water quality of the receiving water, including the change extent of pH, dissolved oxygen (DO), the contents of carbon, nitrogen and phosphorus, etc. The influence of decomposition on water quality and the concentrations of the released chemical materials both followed the order of water hyacinth > hydrilla > cattail. Greater influence was obtained with higher dosage of plant litter addition. The influence also varied with sediment addition. Moreover, nitrogen released from the decomposition of water hyacinth and hydrilla were mainly NH3-N and organic nitrogen while those from cattail litter included organic nitrogen and NO3⁻-N. After the decomposition, the average carbon to nitrogen ratio (C/N) in the receiving water was about 2.6 (water hyacinth), 5.3 (hydrilla) and 20.3 (cattail). Therefore, cattail litter might be a potential plant carbon source for denitrification in ecological system of a constructed wetland.
اظهر المزيد [+] اقل [-]Diversity of shrub tree layer, leaf litter decomposition and N release in a Brazilian Cerrado under N, P and N plus P additions النص الكامل
2011
Jacobson, Tamiel Khan Baiocchi | Bustamante, Mercedes Maria da Cunha | Kozovits, Alessandra Rodrigues
This study investigated changes in diversity of shrub-tree layer, leaf decomposition rates, nutrient release and soil NO fluxes of a Brazilian savanna (cerrado sensu stricto) under N, P and N plus P additions. Simultaneous addition of N and P affected density, dominance, richness and diversity patterns more significantly than addition of N or P separately. Leaf litter decomposition rates increased in P and NP plots but did not differ in N plots in comparison to control plots. N addition increased N mass loss, while the combined addition of N and P resulted in an immobilization of N in leaf litter. Soil NO emissions were also higher when N was applied without P. The results indicate that if the availability of P is not increased proportionally to the availability of N, the losses of N are intensified.
اظهر المزيد [+] اقل [-]Urbanization-related changes in European aspen (Populus tremula L.): Leaf traits and litter decomposition النص الكامل
2010
Nikula, Suvi | Vapaavuori, Elina | Manninen, Sirkku
Urbanization-related changes in European aspen (Populus tremula L.): Leaf traits and litter decomposition النص الكامل
2010
Nikula, Suvi | Vapaavuori, Elina | Manninen, Sirkku
We investigated foliar and litter responses of European aspen (Populus tremula L.) to urbanization, including factors such as increased temperature, moisture stress and nitrogen (N) deposition. Leaf samples were collected in 2006-2008 from three urban and three rural forest stands in the Helsinki Metropolitan Area, southern Finland, and reciprocal litter transplantations were established between urban and rural sites. Urban leaves exhibited a higher amount of epicuticular waxes and N concentration, and a lower C:N ratio than rural ones, but there was no difference in specific leaf area. Urban litter had a slightly higher N concentration, lower concentrations of lignin and total phenolics, and was more palatable to a macrofaunal decomposer. Moreover, litter decay was faster at the urban site and for urban litter. Urbanization thus resulted in foliar acclimatization in terms of increased amount of epicuticular waxes, as well as in accelerated decomposition of the N-richer leaf litter.
اظهر المزيد [+] اقل [-]Urbanization-related changes in European aspen (Populus tremula L.): Leaf traits and litter decomposition
Structural and functional responses of benthic invertebrates to imidacloprid in outdoor stream mesocosms النص الكامل
2009
Pestana, J.L.T. | Alexander, A.C. | Culp, J.M. | Baird, D.J. | Cessna, A.J. | Soares, A.M.V.M.
Structural and functional responses of a benthic macroinvertebrate assemblage to pulses of the insecticide imidacloprid were assessed in outdoor stream mesocosms. Imidacloprid pulses reduced invertebrate abundance and community diversity in imidacloprid-dosed streams compared to control streams. These results correlated well with effects of imidacloprid on leaf litter decomposition and feeding rates of Pteronarcys comstocki, a stonefly, in artificial streams. Reductions in oxygen consumption of stoneflies exposed to imidacloprid were also observed in laboratory experiments. Our findings suggest that leaf litter degradation and single species responses can be sensitive ecotoxicological endpoints that can be used as early warning indicators and biomonitoring tools for pesticide contamination. The data generated illustrates the value of mesocosm experiments in environmental assessment and how the consideration of functional and structural endpoints of natural communities together with in situ single species bioassays can improve the evaluation and prediction of pesticide effects on stream ecosystems. Combining organism-level responses with community-level processes for the evaluation and prediction of pesticide effects on stream ecosystems.
اظهر المزيد [+] اقل [-]