خيارات البحث
النتائج 1 - 10 من 79
Terrestrial dissolved organic matter source affects disinfection by-product formation during water treatment and subsequent toxicity
2021
Franklin, Hannah M. | Doederer, Katrin | Neale, Peta A. | Hayton, Joshua B. | Fisher, Paul | Maxwell, Paul | Carroll, Anthony R. | Burford, Michele A. | Leusch, Frederic D.L.
Restoring woody vegetation to riparian zones helps to protect waterways from excessive sediment and nutrient inputs. However, the associated leaf litter can be a major source of dissolved organic matter (DOM) leached into surface waters. DOM can lead to the formation of disinfection by-products (DBPs) during drinking water treatment. This study investigated the DBPs formed during chlorination of DOM leached from leaf litter and assessed the potential toxicity of DBPs generated. We compared the leachate of two native Australian riparian trees, Casuarina cunninghamiana and Eucalyptus tereticornis, and a reservoir water source from a catchment dominated by Eucalyptus species. Leachates were diluted to dissolved organic carbon concentrations equivalent to the reservoir (~9 mg L⁻¹). E. tereticornis leachates produced more trihalomethanes (THMs), haloacetic acids (HAAs), and haloketones after chlorination, while C. cunninghamiana produced more chloral hydrate and haloacetonitriles. Leachate from both species produced less THMs and more HAAs per mole of carbon than reservoir water. This may be because reservoir water had more aromatic, humic characteristics while leaf leachates had relatively more protein-like components. Using in vitro bioassays to test the mixture effects of all chemicals, chlorinated E. tereticornis leachate induced oxidative stress in HepG2 liver cells and bacterial toxicity more frequently and at lower concentrations than C. cunninghamiana and reservoir water. Overall, this study has shown that the DOM leached from litter of these species has the potential to generate DBPs and each species has a unique DBP profile with differing bioassay responses. E. tereticornis may pose a relatively greater risk to drinking water than C. cunninghamiana as it showed greater toxicity in bioassays. This implies tree species should be considered when planning riparian zones to ensure the benefits of vegetation to waterways are not offset by unintended increased DBP production and associated toxicity following chlorination at downstream drinking water intakes.
اظهر المزيد [+] اقل [-]Long-term N and S addition and changed litter chemistry do not affect trembling aspen leaf litter decomposition, elemental composition and enzyme activity in a boreal forest
2019
Wang, Qi | Kwak, Jin-Hyeob | Choi, Woo-Jung | Chang, Scott X.
The effect of long-term nitrogen (N) and sulfur (S) deposition on litter mass loss and changes in carbon (C), N, and S composition and enzyme activities during litter decomposition was investigated in a boreal forest. This study included four N × S treatments: control (CK), N application (30 kg N ha−1 yr−1), S application (30 kg S ha−1 yr−1), and N plus S application (both at 30 kg ha−1 yr−1). Two experiments were conducted for 22 months: 1) a common litter decomposition experiment with litter bags containing a common litter (same litter chemistry) and 2) an in-situ litter decomposition experiment with litter from each treatment plot (and thus having different litter chemistry). Litterbags were placed onto the four treatment plots to investigate the direct effect of N and S addition and the combined effect of N and/or S addition and litter chemistry on litter decomposition, respectively. Regardless of the source of litter, N and/or S addition affected C, N and S composition at a certain period of the experiment but did not affect litter mass loss and enzyme activity throughout the experiment, indicating that the N and S addition rates were below the critical level required to affect C and N cycling in the studied ecosystem. However, the greater change in N composition per unit of litter mass loss in the N addition treatment than in the other treatments in the common litter but not in the in-situ litter experiment, suggests that the effect of N addition on N loss and retention depends on the initial litter chemistry. We conclude that the studied N and S addition rates did not affect litter decomposition and elemental cycling in the studied forest ecosystem even though the N and S addition rates were much greater than their ambient deposition rates.
اظهر المزيد [+] اقل [-]Polyester-derived microfibre impacts on the soil-dwelling earthworm Lumbricus terrestris
2019
Prendergast-Miller, Miranda T. | Katsiamides, Andreas | Abbass, Mustafa | Sturzenbaum, Stephen R. | Thorpe, Karen L. | Hodson, Mark E.
Microplastic (MP) pollution is everywhere. In terrestrial environments, microfibres (MFs) generated from textile laundering are believed to form a significant component of MPs entering soils, mainly through sewage sludge and compost applications. The aim of this study was to assess the effect of MFs on a keystone soil organism. We exposed the earthworm Lumbricus terrestris to soil with polyester MFs incorporated at rates of 0, 0.1 and 1.0 %w/w MF for a period of 35 days (in the dark at 15 °C; n = 4 for each treatment). Dried plant litter was applied at the soil surface as a food source for the earthworms. We assessed earthworm vitality through mortality, weight change, depurate production and MF avoidance testing. In addition, we measured stress biomarker responses via the expression of metallothionein-2 (mt-2), heat shock protein (hsp70) and superoxide dismutase (sod-1). Our results showed that exposure and ingestion of MFs (as evidenced by subsequent retrieval of MFs within earthworm depurates) were not lethal to earthworms, nor did earthworms actively avoid MFs. However, earthworms in the MF1.0% treatment showed a 1.5-fold lower cast production, a 24.3-fold increase in expression of mt-2 (p < 0.001) and a 9.9-fold decline in hsp70 expression (p < 0.001). Further analysis of soil and MF samples indicated that metal content was not a contributor to the biomarker results. Given that burrowing and feeding behaviour, as well as molecular genetic biomarkers, were modulated in earthworms exposed to MFs, our study highlights potential implications for soil ecosystem processes due to MF contamination.
اظهر المزيد [+] اقل [-]Effect of simulated acid rain on CO2, CH4 and N2O fluxes and rice productivity in a subtropical Chinese paddy field
2018
Wang, Chun | Wang, Weiqi | Sardans, Jordi | An, Wanli | Zeng, Congsheng | Abid, Abbas Ali | Peñuelas, Josep
The need of more food production, an increase in acidic deposition and the large capacity of paddy to emit greenhouse gases all coincide in several areas of China. Studying the effects of acid rain on the emission of greenhouse gases and the productivity of rice paddies are thus important, because these effects are currently unknown. We conducted a field experiment for two rice croppings (early and late paddies independent experiment) to determine the effects of simulated acid rain (control, normal rain, and treatments with rain at pH of 4.5, 3.5 and 2.5) on the fluxes of CO₂, CH₄ and N₂O and on rice productivity in subtropical China. Total CO₂ fluxes at pHs of 4.5, 3.5 and 2.5 were 10.3, 9.7 and 3.2% lower in the early paddy and 28.3, 14.8 and 6.8% lower in the late paddy, respectively, than the control. These differences from the control were significant for pH 3.5 and 4.5. Total CH₄ fluxes at pHs of 4.5, 3.5 and 2.5 were 50.4, 32.9 and 25.2% lower in the early paddy, respectively, than the control. pH had no significant effect on CH₄ flux in the late paddy or for total (early + late) emissions. N₂O flux was significantly higher at pH 2.5 than 3.5 and 4.5 but did not differ significantly from the flux in the control. Global-warming potentials (GWPs) were lower than the control at pH 3.5 and 4.5 but not 2.5, whereas rice yield was not appreciably affected by pH. Acid rain (between 3.5 and 4.5) may thus significantly affect greenhouse gases emissions by altering soil properties such as pH and nutrient pools, whereas highly acidic rain (pH 2.5) could increase GWPs (but not significantly), probably partially due to an increase in the production of plant litter.
اظهر المزيد [+] اقل [-]Differences between a deciduous and a conifer tree species in gaseous and particulate emissions from biomass burning
2018
Pallozzi, Emanuele | Lusini, Ilaria | Cherubini, Lucia | Hajiaghayeva, Ramilla A. | Ciccioli, Paolo | Calfapietra, Carlo
In the Mediterranean ecosystem, wildfires are very frequent and the predicted future with a probable increase of fires could drastically modify the vegetation scenarios. Vegetation fires are an important source of gases and primary emissions of fine carbonaceous particles in the atmosphere. In this paper, we present gaseous and particulate emissions data from the combustion of different plant tissues (needles/leaves, branches and needle/leaf litter), obtained from one conifer (Pinus halepensis) and one deciduous broadleaf tree (Quercus pubescens). Both species are commonly found throughout the Mediterranean area, often subject to wildfires. Experiments were carried out in a combustion chamber continuously sampling emissions throughout the different phases of a fire (pre-ignition, flaming and smoldering). We identified and quantified 83 volatile organic compounds including important carcinogens that can affect human health. CO and CO₂ were the main gaseous species emitted, benzene and toluene were the dominant aromatic hydrocarbons, methyl-vinyl-ketone and methyl-ethyl-ketone were the most abundant measured oxygenated volatile organic compounds. CO₂ and methane emissions peaked during the flaming phase, while the peak of CO emissions occurred during the smoldering phase. Overall, needle/leaf combustion released a greater amount of volatile organic compounds into the atmosphere than the combustion of branches and litter. There were few differences between emissions from the combustion of the two tree species, except for some compounds. The combustion of P. halepensis released a great amount of monoterpenes as α-pinene, β-pinene, p-cymene, sabinene, 3-carene, terpinolene and camphene that are not emitted from the combustion of Q. pubescens. The combustion of branches showed the longest duration of flaming and peak of temperature. Data presented appear crucial for modeling with the intent of understanding the loss of C during different phases of fire and how different typologies of biomass can affect wildfires and their speciation emissions profile.
اظهر المزيد [+] اقل [-]Review on the effects of toxicants on freshwater ecosystem functions
2013
Peters, K. | Bundschuh, M. | Schäfer, R.B.
We reviewed 122 peer-reviewed studies on the effects of organic toxicants and heavy metals on three fundamental ecosystem functions in freshwater ecosystems, i.e. leaf litter breakdown, primary production and community respiration. From each study meeting the inclusion criteria, the concentration resulting in a reduction of at least 20% in an ecosystem function was standardized based on median effect concentrations of standard test organisms (i.e. algae and daphnids). For pesticides, more than one third of observations indicated reductions in ecosystem functions at concentrations that are assumed being protective in regulation. Moreover, the reduction in leaf litter breakdown was more pronounced in the presence of invertebrate decomposers compared to studies where only microorganisms were involved in this function. High variability within and between studies hampered the derivation of a concentration–effect relationship. Hence, if ecosystem functions are to be included as protection goal in chemical risk assessment standardized methods are required.
اظهر المزيد [+] اقل [-]Ecotoxicological effects evoked in hydrophytes by leachates of invasive Acer negundo and autochthonous Alnus glutinosa fallen off leaves during their microbial decomposition
2013
Krevš, Alina | Darginavičienė, Jūratė | Gylytė, Brigita | Grigutytė, Reda | Jurkonienė, Sigita | Karitonas, Rolandas | Kučinskienė, Alė | Pakalnis, R. | Sadauskas, Kazys | Vitkus, Rimantas | Manusadžianas, Levonas
Throughout 90-day biodegradation under microaerobic conditions, invasive to Lithuania species boxelder maple (Acer negundo) leaves lost 1.5-fold more biomass than that of autochthonous black alder (Alnus glutinosa), releasing higher contents of Ntot, ammonium and generating higher BOD7. Boxelder maple leaf leachates were characterized by higher total bacterial numbers and colony numbers of heterotrophic and cellulose-decomposing bacteria than those of black alder. The higher toxicity of A. negundo aqueous extracts and leachates to charophyte cell (Nitellopsis obtusa), the inhabitant of clean lakes, were manifested at mortality and membrane depolarization levels, while the effect on H+-ATPase activity in membrane preparations from the same algae was stronger in case of A. glutinosa. Duckweed (Lemna minor), a bioindicator of eutrophic waters, was more sensitive to leaf leachates of A. glutinosa. Fallen leaves and leaf litter leachates from invasive and native species of trees, which enter water body, affect differently microbial biodestruction and aquatic vegetation in freshwater systems.
اظهر المزيد [+] اقل [-]Impacts of warming on aquatic decomposers along a gradient of cadmium stress
2012
Batista, D. | Pascoal, C. | Cássio, F.
We evaluated the effects of cadmium and temperature on plant-litter decomposition by examining diversity and activity of aquatic fungi and leaf consumption by Limnephilus sp., a typical invertebrate shredder of Iberian streams. Freshly fallen leaves were immersed in a stream to allow microbial colonization, and were exposed in microcosms to a gradient of cadmium (≤11 levels, ≤35 mg L⁻¹). Microcosms were kept at 15 °C, a temperature typically found in Iberian streams in autumn, and at 21 °C to simulate a warming scenario. The increase in temperature stimulated leaf decomposition by microbes, fungal reproduction and leaf consumption by the shredder. Conversely, increased cadmium concentrations inhibited fungal reproduction and diversity, and leaf consumption by the invertebrate. Cadmium concentration inhibiting 50% of fungal reproduction, microbial decomposition and leaf consumption by the shredder was higher at 15 °C than at 21 °C, suggesting that higher temperatures can lead to increased metal toxicity to aquatic decomposers.
اظهر المزيد [+] اقل [-]Environmentally relevant fungicide levels modify fungal community composition and interactions but not functioning
2021
Baudy, Patrick | Zubrod, Jochen P. | Konschak, Marco | Röder, Nina | Nguyễn, Thu Huyền | Schreiner, Verena C. | Baschien, Christiane | Schulz, Ralf | Bundschuh, Mirco
Aquatic hyphomycetes (AHs), a group of saprotrophic fungi adapted to submerged leaf litter, play key functional roles in stream ecosystems as decomposers and food source for higher trophic levels. Fungicides, controlling fungal pathogens, target evolutionary conserved molecular processes in fungi and contaminate streams via their use in agricultural and urban landscapes. Thus fungicides pose a risk to AHs and the functions they provide. To investigate the impacts of fungicide exposure on the composition and functioning of AH communities, we exposed four AH species in monocultures and mixed cultures to increasing fungicide concentrations (0, 5, 50, 500, and 2500 μg/L). We assessed the biomass of each species via quantitative real-time PCR. Moreover, leaf decomposition was investigated. In monocultures, none of the species was affected at environmentally relevant fungicide levels (5 and 50 μg/L). The two most tolerant species were able to colonize and decompose leaves even at very high fungicide levels (≥500 μg/L), although less efficiently. In mixed cultures, changes in leaf decomposition reflected the response pattern of the species most tolerant in monocultures. Accordingly, the decomposition process may be safeguarded by tolerant species in combination with functional redundancy. In all fungicide treatments, however, sensitive species were displaced and interactions between fungi changed from complementarity to competition. As AH community composition determines leaves’ nutritional quality for consumers, the data suggest that fungicide exposures rather induce bottom-up effects in food webs than impairments in leaf decomposition.
اظهر المزيد [+] اقل [-]Litter decomposition can be reduced by pesticide effects on detritivores and decomposers: Implications for tropical stream functioning
2021
Cornejo, Aydeé | Pérez Ovalle, Javier | López-Rojo, Naiara | García, Gabriela | Perez, Edgar | Guerra, Alisson | Nieto, Carlos | Boyero, Luz
Understanding which factors affect the process of leaf litter decomposition is crucial if we are to predict changes in the functioning of stream ecosystems as a result of human activities. One major activity with known consequences on streams is agriculture, which is of particular concern in tropical regions, where forests are being rapidly replaced by crops. While pesticides are potential drivers of reduced decomposition rates observed in agricultural tropical streams, their specific effects on the performance of decomposers and detritivores are mostly unknown. We used a microcosm experiment to examine the individual and joint effects of an insecticide (chlorpyrifos) and a fungicide (chlorothalonil) on survival and growth of detritivores (Anchytarsus, Hyalella and Lepidostoma), aquatic hyphomycetes (AH) sporulation rate, taxon richness, assemblage structure, and leaf litter decomposition rates. Our results revealed detrimental effects on detritivore survival (which were mostly due to the insecticide and strongest for Hyalella), changes in AH assemblage structure, and reduced sporulation rate, taxon richness and microbial decomposition (mostly in response to the fungicide). Total decomposition was reduced especially when the pesticides were combined, suggesting that they operated differently and their effects were additive. Importantly, effects on decomposition were greater for single-species detritivore treatments than for the 3-species mixture, indicating that detritivore species loss may exacerbate the consequences of pesticides of stream ecosystem functioning.
اظهر المزيد [+] اقل [-]