خيارات البحث
النتائج 1 - 10 من 172
PCBs [polychlorinated biphenyls], dioxins and furans in hooded merganser (Lophodytes cucullatus), common merganser (Mergus merganser) and mink (Mustela vison) collected along the St. Maurice River near La Tuque, Quebec.
1996
Champoux L.
Haematological parameters as predictors of blood lead and indicators of lead poisoning in the black duck (Anas rubripes).
1989
Pain D.J.
Novel toxic dinoflagellate causes epidemic disease in estuarine fish [USA].
1996
Noga E.J. | Khoo L. | Stevens J.B. | Fan Z. | Burkholder J.M.
Use of nondestructive biomarkers and residue analysis to assess the health status of endangered species of pinnipeds in the south-west Atlantic.
1997
Fossi M.C. | Marsili L. | Junin M. | Castello H. | Lorenzani J.A. | Casini S. | Savelli C. | Leonzio C.
Food pollution
1972
Marine, Gene | Van Allen, Judith
Investigation of the effects of dichlorvos poisoning on AMPK signaling pathway in chicken brain tissues النص الكامل
2020
Xiao, Yanyu | Zheng, Xibang | Li, Guyue | Zhou, Changming | Wu, Cong | Xu, Zheng | Hu, Guoliang | Guo, Xiaoquan | Li, Lin | Cao, Huabin | Latigo, Vincent | Liu, Ping
Dichlorvos is a common crop insecticide widely used by people which causes extensive and serious environmental pollution. However, it has been shown that organophosphorus poisoning causes energy metabolism and neural disorders. The overall purpose of this study was to investigate the damage to brain tissue and the changes in AMPK signaling pathway-related gene expression after dichlorvos poisoning in chickens. White-feathered broiler chickens, as the research subjects of this experiment, were divided into three groups: control group, low-dose group (77.5% dichlorvos at 1.13 mg/kg dose) and high-dose group (77.5% dichlorvos at 10.2 mg/kg dose). Clinical symptoms were observed after modeling, and an integrative analysis was conducted using HE staining microscopy, immune-histochemical microscopy, electron microscopy and PCR arrays. The results showed that the high-dose group had more obvious dyspnea, salivation, convulsion and other neurological phenomena. Pathological sections showed that nuclear disintegration of neurons was most obvious in the low-dose group, and apoptosis of brain cells was most obvious in the high-dose group, and the mitochondrial structure was destroyed in the two poisoned group, i.e. low-dose group and high-dose group. PCR arrays showed that AMPK signaling pathway was inhibited and the expressions of genes involved in energy metabolism (ACACA and PRKAA1) were significantly changed. Furthermore, genes associated with protein synthesis (EIF4EBP1) were significantly upregulated. FASN and HMGCR expressions were significantly increased. There were significant changes in the expressions of cell cycle-related genes (STK11, TP53 and FOXO3). Organophosphate poisoning can cause a lot of nuclear disintegration of brain neurons, increases cell apoptosis, disrupts the energy metabolism of mitochondrial structure, and inhibits the AMPK signaling pathway. These results provide a certain idea and basis for studying the mechanism of AMPK signaling after organophosphorus poisoning and provide a research basis for the prevention and treatment of organophosphorus poisoning.
اظهر المزيد [+] اقل [-]NSAIDs detected in Iberian avian scavengers and carrion after diclofenac registration for veterinary use in Spain النص الكامل
2020
Herrero-Villar, Marta | Velarde, Roser | Camarero, Pablo R. | Taggart, Mark A. | Bandeira, Victor | Fonseca, Carlos | Marco, Ignasi | Mateo, Rafael
NSAIDs detected in Iberian avian scavengers and carrion after diclofenac registration for veterinary use in Spain النص الكامل
2020
Herrero-Villar, Marta | Velarde, Roser | Camarero, Pablo R. | Taggart, Mark A. | Bandeira, Victor | Fonseca, Carlos | Marco, Ignasi | Mateo, Rafael
Despite the now well recognised impact of diclofenac on vultures across the Indian subcontinent, this non-steroidal anti-inflammatory drug (NSAID) was registered in 2013 for livestock treatment in Spain, Europe’s main vulture stronghold. We assessed the risk of exposure to diclofenac and nine other NSAIDs in avian scavengers in the Iberian Peninsula (Spain and Portugal) after the onset of diclofenac commercialization. We sampled 228 livestock carcasses from vulture feeding sites, primarily pig (n = 156) and sheep (n = 45). We also sampled tissues of 389 avian scavenger carcasses (306 Eurasian griffon vultures, 15 cinereous vultures, 11 Egyptian vultures, 12 bearded vultures and 45 other facultative scavengers). Samples were analysed by liquid chromatography with mass spectrometry (LCMS). Seven livestock carcasses (3.07%) contained NSAID residues: flunixin (1.75%), ketoprofen, diclofenac and meloxicam (0.44% each). NSAID residues were only detected in sheep (4.44%) and pig (3.21%) carcasses. Fourteen dead avian scavengers (3.60%) had NSAID residues in kidney and liver, specifically flunixin (1.03%) and meloxicam (2.57%). Flunixin was associated with visceral gout and/or kidney damage in three (0.98%) dead Eurasian griffons. To date, diclofenac poisoning has not been observed in Spain and Portugal, however, flunixin would appear to pose an immediate and clear risk. This work supports the need for well managed carrion disposal, alongside appropriate risk labelling on veterinary NSAIDs and other pharmaceuticals potentially toxic to avian scavengers.
اظهر المزيد [+] اقل [-]NSAIDs detected in Iberian avian scavengers and carrion after diclofenac registration for veterinary use in Spain النص الكامل
2020
Herrero-Villar, Marta | Velarde, Roser | Camarero, Pablo R, | Taggart, Mark A | Bandeira, Victor | Fonseca, Carlos | Marco, Ignasi | Mateo, Rafael
Despite the now well recognised impact of diclofenac on vultures across the Indian subcontinent, this non-steroidal anti-inflammatory drug (NSAID) was registered in 2013 for livestock treatment in Spain, Europe's main vulture stronghold. We assessed the risk of exposure to diclofenac and nine other NSAIDs in avian scavengers in the Iberian Peninsula (Spain and Portugal) after the onset of diclofenac commercialization. We sampled 228 livestock carcasses from vulture feeding sites, primarily pig (n = 156) and sheep (n = 45). We also sampled tissues of 389 avian scavenger carcasses (306 Eurasian griffon vultures, 15 cinereous vultures, 11 Egyptian vultures, 12 bearded vultures and 45 other facultative scavengers). Samples were analysed by liquid chromatography with mass spectrometry (LCMS). Seven livestock carcasses (3.07%) contained NSAID residues: flunixin (1.75%), ketoprofen, diclofenac and meloxicam (0.44% each). NSAID residues were only detected in sheep (4.44%) and pig (3.21%) carcasses. Fourteen dead avian scavengers (3.60%) had NSAID residues in kidney and liver, specifically flunixin (1.03%) and meloxicam (2.57%). Flunixin was associated with visceral gout and/or kidney damage in three (0.98%) dead Eurasian griffons. To date, diclofenac poisoning has not been observed in Spain and Portugal, however, flunixin would appear to pose an immediate and clear risk. This work supports the need for well managed carrion disposal, alongside appropriate risk labelling on veterinary NSAIDs and other pharmaceuticals potentially toxic to avian scavengers. | published
اظهر المزيد [+] اقل [-]Sex-dependent locomotion and physiological responses shape the insecticidal susceptibility of parasitoid wasps النص الكامل
2020
Andreazza, Felipe | Haddi, Khalid | Nörnberg, Sandro D. | Guedes, Raul Narciso C. | Nava, Dori E. | Oliveira, Eugênio E.
The adaptive fitness of insect species can be shaped by how males and females respond, both physiologically and behaviorally, to environmental challenges, such as pesticide exposure. In parasitoid wasps, most toxicological investigations focus only on female responses (e.g., survival and especially parasitism abilities), leaving the male contributions to adaptive fitness (survival, locomotion, mate search) poorly investigated. Here, we evaluated the toxicity of the spinosyn insecticide spinosad against the South American fruit fly, Anastrepha fraterculus, and we used the parasitoid wasp Diachasmimorpha longicaudata (Ashmead) to evaluate whether sex-linked locomotory and physiological responses would influence the susceptibility of these organisms to spinosad. Our results revealed that D. longicaudata males were significantly more susceptible (median lethal time (LT₅₀) = 24 h) to spinosad than D. longicaudata females (LT₅₀ = 120 h), which may reflect the differences in their locomotory and physiological (e.g., respiratory) responses to mitigate insecticide exposure. Compared to D. longicaudata females, male wasps were lighter (P < 0.001), walked for longer distances (P < 0.001) and periods (P < 0.001), and exhibited higher sensilla densities in their tarsi (P = 0.008), which may facilitate their intoxication with the insecticide. These findings indicate that male parasitoids should not be exempt from insecticide selectivity tests, as these organisms can be significantly more affected by such environmental challenges than their female conspecifics.
اظهر المزيد [+] اقل [-]Tolerance and resistance characteristics of microalgae Scenedesmus sp. LX1 to methylisothiazolinone النص الكامل
2018
Wang, Xiao-Xiong | Zhang, Tian-Yuan | Dao, Guo-Hua | Hu, Hong-Ying
Methylisothiazolinone (MIT) has been widely used to control bacterial growth in reverse osmosis (RO) systems. However, MIT's toxicity on microalgae should be determined because residual MIT is concentrated into RO concentrate (ROC) and might have a severe impact on microalgae-based ROC treatment. This study investigated the tolerance of Scenedesmus sp. LX1 to MIT and revealed the mechanism of algal growth inhibition and toxicity resistance. Scenedesmus sp. LX1 was inhibited by MIT with a half-maximal effective concentration at 72 h (72 h-EC50) of 1.00 mg/L, but the strain recovered from the inhibition when its growth was not completely inhibited. It was observed that this inhibition's effect on subsequent growth was weak, and the removal of MIT was the primary reason for the recovery. Properly increasing the initial algal density significantly shortened the adaptation time for accelerated recovery in a MIT-containing culture. Photosynthesis damage by MIT was one of the primary reasons for growth inhibition, but microalgal cell respiration and adenosine triphosphate (ATP) synthesis were not completely inhibited, and the algae were still alive even when growth was completely inhibited, which was notably different from observations made with bacteria and fungi. The algae synthesized more chlorophyll, antioxidant enzymes of superoxide dismutase (SOD) and catalase (CAT), and small molecules, such as reduced glutathione (GSH), to resist MIT poisoning. The microalgae-based process could treat the MIT-containing ROC, since MIT was added for only several hours a week in municipal wastewater reclamation RO processes, and the MIT average concentration was considerably lower than the maximum concentration that algae could tolerate.
اظهر المزيد [+] اقل [-]Aluminum: A potentially toxic metal with dose-dependent effects on cardiac bioaccumulation, mineral distribution, DNA oxidation and microstructural remodeling النص الكامل
2018
Novaes, Rômulo D. | Mouro, Viviane G.S. | Gonçalves, Reggiani V. | Mendonça, Andrea A.S. | Santos, Eliziária C. | Fialho, Maria C.Q. | Machado-Neves, Mariana
Large amounts of aluminum (Al) are found in wastewater from industrial bauxite mining, which is often responsible for the contamination of drinking water sources in urban and rural communities. Although this metal exhibits broad environmental distribution, its cardiac repercussions are poorly understood, making it difficult to establish diagnostic criteria in cases of Al intoxication. In the absence of clinical data, we used a preclinical model to investigate the impact of Al exposure on heart bioaccumulation, molecular oxidation, micromineral distribution, structural and ultrastructural remodeling of the cardiac tissue. Male Wistar rats were equally randomized into five groups: G1 = distilled water; and G2 to G5 = 0.02, 0.1, 50, and 200 mg/kg aluminum solution, respectively. After 120 days, the hearts were collected and subjected to mineral microanalysis, immunoenzymatic detection of 8-OHdG, as well as bright field, polarizing, scanning and transmission electron microscopy to estimate the extent of the cardiac remodeling and cardiomyocytes ultrastructure. Long-term Al exposure induced dose-dependent bioaccumulation, micromineral imbalance, genomic DNA oxidation, structural and ultrastructural abnormalities of the cardiac tissue, resulting in extensive parenchymal loss, stromal expansion, diffuse inflammatory infiltrate, increased glycoconjugate and collagen deposition, subversion and collapse of the collagen network, reduced myocardial vascularization index, mitochondrial swelling, sarcomere disorganization, myofilament dissociation, and fragmentation in cardiomyocytes. Our findings indicated that the heart was sensitive to Al-mediated toxicity, especially in animals treated with the three highest doses of Al. In response to Al-induced loss of the parenchyma, heart stroma exhibited a reactive and compensatory expansion, which, in combination with the increased distribution of thick myofibrils and degenerated mitochondria in cardiomyocytes, provides morphological evidence that cardiac tissue adaptations are not enough to adjust the relationships between the parenchyma and stroma until a steady state is reached, resulting in continuous pathological remodeling potentially associated with Al-induced proinflammatory and pro-oxidant events.
اظهر المزيد [+] اقل [-]