خيارات البحث
النتائج 1 - 7 من 7
Diurnal and seasonal variations of greenhouse gas emissions from a commercial broiler barn and cage-layer barn in the Canadian Prairies
2019
Huang, Dandan | Guo, Huiqing
Baseline emission values of greenhouse gases were not well established for commercial poultry barns in cold regions, including Canada, due to a lack of well-designed field studies. Emission factors of carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O), were acquired for a commercial broiler barn and cage-layer barn in the Canadian Prairies climate. Between March 2015 and February 2016, monthly measurements throughout the year for the layer barn and over 6 flocks for the broiler barn, and diurnal measurements in the mild, warm, and cold seasons for both barns were conducted, respectively. The ventilation rate was estimated based on a CO₂ mass balance method; thus CO₂ emissions were quantified by the CIGR (2002) models. The CH₄ and N₂O emissions present at low levels from global perspective for both barns; the cold climate proved to be a major reason for the lower CH₄ emission from the layer barn. Considerable seasonal effect was observed only for N₂O emissions from the broiler barn, and for CH₄ and N₂O emissions from the layer barn, both with higher emissions in the mild and warm seasons than in the cold season. The big diurnal variations of CO₂ emissions for the layer barn demonstrated the uncertainty of the seasonal results by snapshot measurements and correction factors (from −20.9% to −22.5%) were obtained. Besides, the difference of CH₄ and N₂O concentrations and emissions as well as CO₂ concentrations between best-case (the first day after manure removal) and worst-case conditions (the last day before manure removal) was not obvious for the layer barn. Additionally, changes of temperature and ventilation rate were likely to have more impact on N₂O emission for the broiler barn and more impact on CH₄ emission for the layer barn than on the other two gas emissions, both with positive correlations.
اظهر المزيد [+] اقل [-]Current and future hot-spots and hot-moments of nitrous oxide emission in a cold climate river basin
2018
Shrestha, Narayan Kumar | Wang, Junye
An ecosystem in a cold climate river basin is vulnerable to the effects of climate change affecting permafrost thaw and glacier retreat. We currently lack sufficient data and information if and how hydrological processes such as glacier retreat, snowmelt and freezing-thawing affect sediment and nutrient runoff and transport, as well as N₂O emissions in cold climate river basins. As such, we have implemented well-established, semi-empirical equations of nitrification and denitrification within the Soil and Water Assessment Tool (SWAT), which correlate the emissions with water, sediment and nutrients. We have tested this implementation to simulate emission dynamics at three sites on the Canadian prairies. We then regionalized the optimized parameters to a SWAT model of the Athabasca River Basin (ARB), Canada, calibrated and validated for streamflow, sediment and water quality. In the base period (1990–2005), agricultural areas (2662 gN/ha/yr) constituted emission hot-spots. The spring season in agricultural areas and summer season in forest areas, constituted emission hot-moments. We found that warmer conditions (+13% to +106%) would have a greater influence on emissions than wetter conditions (−19% to +13%), and that the combined effect of wetter and warmer conditions would be more offsetting than synergetic. Our results imply that the spatiotemporal variability of N₂O emissions will depend strongly on soil water changes caused by permafrost thaw. Early snow freshet leads to spatial variability of soil erosion and nutrient runoff, as well as increases of emissions in winter and decreases in spring. Our simulations suggest crop residue management may reduce emissions by 34%, but with the mixed results reported in the literature and the soil and hydrology problems associated with stover removal more research is necessary. This modelling tool can be used to refine bottom-up emission estimations at river basin scale, test plausible management scenarios, and assess climate change impacts including climate feedback.
اظهر المزيد [+] اقل [-]Polychlorinated biphenyls in a rural watershed in the southern prairie region of Canada
1998
Rawn, D.F.K. | Halldorson, T.H.J. | Lawson, B.D. | Muir, D.C.G. (Department of Soil Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 (Canada))
Point Source Ammonia Emissions are Having a Detrimental Impact On Prairie Vegetation
2010
Stevens, Carly J. | Tilman, David
Prairie grasslands are very species rich but have declined in their extent considerably due to land-use change and exploitation. Many remaining prairie fragments are situated within an agricultural matrix and can be subjected to high levels of atmospheric ammonia deposition from animal units. Three prairie fragments in Minnesota that were located in close proximity to feedlots were selected, and 500-m transects were studied at an increasing distance from the feedlot. Changes in soil pH, soil nitrate concentration, and soil ammonium concentration with increasing distance from the source were variable between the sites, possibly due to differences in the processing of nitrogen in the soil and the degree of nitrogen limitation. Species richness showed significant negative relationships with ammonia deposition and soil nitrate concentration, whereas aboveground biomass showed a positive relationship with ammonia deposition. Both the richness and biomass of nongraminoid species declined with increasing soil nitrate concentration, whereas graminoid biomass was positively related to ammonia deposition and was negatively associated to richness. Bromus inermis, a non-native perennial grass, was the main species that increased at high deposition. The results of this study have important implications for the conservation and restoration of prairie grasslands.
اظهر المزيد [+] اقل [-]Bulk Deposition of Pesticides in a Canadian City: Part 1. Glyphosate and Other Agricultural Pesticides
2015
Farenhorst, Annemieke | Andronak, L. A. | McQueen, R. D. A.
Winnipeg is a city in the Canadian Prairies with a population of about 600,000. Like many other cities and towns in this region of Canada, the city is surrounded by agriculture. Weekly bulk deposition samples were collected from May to September in 2010 and 2011 and analyzed for 43 pesticides used in Prairie agriculture. Fourteen herbicides, five herbicide metabolites, two insecticides, and two fungicides were detected with 98.5 % of the samples containing chemical mixtures. Glyphosate is the most widely used pesticide in Prairie agriculture and accounted for 65 % of the total pesticide deposition over the 2 years. Seasonal glyphosate deposition was more than five times larger in 2011 (182 mm rain) than 2010 (487 mm rain), suggesting increased glyphosate particulate transport in the atmosphere during the drier year. The seasonal deposition of ten other frequently herbicides was significantly positively correlated with the amount of herbicides applied both in and around Winnipeg (r = 0.90, P < 0.001) and with agricultural herbicide use around Winnipeg (r = 0.63, P = 0.05), but not with agricultural herbicide use province wide (P = 0.23). Herbicides 2,4-D (2,4-dichlorophenoxyacetic acid), dicamba, and mecoprop had known urban applications and were more consistently detected in samples relative to bromoxynil and 2-methyl-4-chlorophenoxyacetic acid (MCPA) whose frequency of detections decreased throughout August and September. The Canadian Water Quality Guidelines for irrigation water were frequently exceeded for both dicamba (75 %) and MCPA (49 %) concentrations in rain. None of glyphosate concentrations in rain exceeded any of the Canadian Water Quality Guidelines established for this herbicide.
اظهر المزيد [+] اقل [-]Uncertainties in vegetated buffer strip function in controlling phosphorus export from agricultural land in the Canadian prairies
2017
Habibiandehkordi, Reza | Lobb, David A. | Sheppard, Steve C. | Flaten, Don N. | Owens, Philip N.
Vegetated buffer strips (VBSs) are widely encouraged as a cost-effective strategy to address phosphorus (P) pollution associated with agricultural production. However, there is a lack of evidence in the effectiveness of these measures for tackling diffuse P pollution in cold-climate regions under concentrated runoff flow conditions. This research aimed to investigate the effects of VBSs on reducing P concentrations in surface runoff at three different watersheds in Manitoba, Canada. Surface runoff samples were collected in four sub-catchments from each watershed by installing paired weirs at 0.5-m and at 5-m into the VBSs along the expected runoff flow path. In addition, P concentrations were measured in soil samples collected within and outside of the runoff flow path to gain further insight into P dynamics within VBSs at each study site. The results indicate that VBSs had little or no significant effect on reducing the concentration of P forms in surface runoff in the majority of situations, resulting in reduced runoff losses of total, dissolved and particulate P concentrations in only 23, 12 and 12% of the situations, respectively. In addition, Olsen extractable P concentrations in VBS soils were not significantly different from field soils both within and outside of the flow path. The ineffective P retention by VBSs in this region is likely associated with the fact that the majority of the runoff flow is concentrated through small portions of VBSs and occurs during snowmelt when biogeochemical processes responsible for P retention in VBSs are limited. Further research is needed to develop alternative management practices that enhance P retention during concentrated snowmelt runoff events in such cold-climate regions.
اظهر المزيد [+] اقل [-]Farmer knowledge and a priori risk analysis: pre-release evaluation of genetically modified Roundup Ready wheat across the Canadian prairies
2009
Mauro, Ian J. | McLachlan, Stéphane M. | Van Acker, Rene C.
Background, aim, and scope The controversy over the world's first genetically modified (GM) wheat, Roundup Ready wheat (RRW), challenged the efficacy of 'science-based' risk assessment, largely because it excluded the public, particularly farmers, from meaningful input. Risk analysis, in contrast, is broader in orientation as it incorporates scientific data as well as socioeconomic, ethical, and legal concerns, and considers expert and lay input in decision-making. Local knowledge (LK) of farmers is experience-based and represents a rich and reliable source of information regarding the impacts associated with agricultural technology, thereby complementing the scientific data normally used in risk assessment. The overall goal of this study was to explore the role of farmer LK in the a priori risk analysis of RRW. Materials and methods In 2004, data were collected from farmers using mail surveys sent across the three prairie provinces (i.e., Manitoba, Saskatchewan, and Alberta) in western Canada. A stratified random sampling approach was used whereby four separate sampling districts were identified in regions where wheat was grown for each province. Rural post offices were randomly selected in each sampling district using Canada Post databases such that no one post office exceeded 80 farms and that each sampling district comprised 225-235 test farms (n = 11,040). In total, 1,814 people responded, representing an adjusted response rate for farmers of 33%. A subsequent telephone survey showed there was no non-response bias. Results The primary benefits associated with RRW were associated with weed control, whereas risks emphasized the importance of market harm, corporate control, agronomic problems, and the likelihood of contamination. Overall, risks were ranked much higher than benefits, and the great majority of farmers were highly critical of RRW commercialization. In total, 83.2% of respondents disagreed that RRW should have unconfined release into the environment. Risk was associated with distrust in government and corporations, previous experience with GM canola, and a strong belief in the importance of community and environment. Farmers were critical of expert-based risk assessment, particularly RRW field trials, and believed that their LK was valuable for assessing agbiotechnology as a whole. Discussion Over 90% of canola production across the Canadian prairies makes use of herbicide-tolerant (HT) varieties. Yet, respondents were generally uniform in their criticism of RRW, regardless whether they were HT users, non-HT-users, conservation tillage or organic in approach. They had a sophisticated understanding of how GM trait confinement was intrinsically tied to grain system segregation and, ultimately, market accessibility, and were concerned that gene flow in RRW would not be contained. Organic farmers were particularly critical of RRW, in large part because certification standards prohibit the presence of GM traits. Farmers practicing conservation tillage were also at relatively great risk, in part because their dependence on glyphosate to control weeds increases the likelihood that RRW volunteer would become more difficult and costly to control. Conclusions This research is the first of its kind to include farmer knowledge in the a priori risk analysis of GM crops and, arguably, given its prairie-wide scope, is the largest scale, independent-farmer-focused study on GM crops ever conducted. The surprising uniformity in attitudes between users and non-users of GM technology and among organic, conventional, conservation tillage and GM using farmers speaks to the ability of farmers to discriminate among HT varieties. Our results clearly show that prairie farmers recognize that the risks associated with RRW commercialization outweigh any benefits. Recommendations and perspectives Farmer knowledge systems are holistic in nature, incorporating socioeconomic, cultural, political, and agroecological factors that all can contribute meaningfully to the pre-release evaluation of GM crops. The inclusion of farmers and other stakeholders in risk assessment will also help enhance and even restore public confidence in science-focused approaches to risk assessment. Although farmers are highly knowledgeable regarding RRW and arguably any agricultural technology, their expertise continues to be overlooked by decision-makers and regulators across North America.
اظهر المزيد [+] اقل [-]