خيارات البحث
النتائج 1 - 10 من 55
Prenatal exposure to propylparaben at human-relevant doses accelerates ovarian aging in adult mice
2021
Li, Milu | Zhou, Su | Wu, Yaling | Li, Yan | Yan, Wei | Guo, Qingchun | Xi, Yueyue | Chen, Yingying | Li, Yuanyuan | Wu, Meng | Zhang, Jinjin | Wei, Jia | Wang, Shixuan
Embryonic exposure to environmental chemicals may result in specific chronic diseases in adulthood. Parabens, a type of environmental endocrine disruptors widely used in pharmaceuticals and cosmetics, have been shown to cause a decline in women's reproductive function. However, whether exposure to parabens during pregnancy also negatively affect the ovarian function of the female offspring in adulthood remains unclear. This study aims to investigate the effects of prenatal propylparaben (PrP) exposure on the ovarian function of adult mice aged 46 weeks, which is equivalent to the age of 40 years in women. Pregnant ICR mice were intraperitoneally injected with human-relevant doses of PrP (i.e., 0, 7.5, 90, and 450 mg/kg/day) during the fetal sex determination period—from embryonic day E7.5 to E13.5. Our results revealed that ovarian aging was accelerated in PrP-exposed mice at 46 weeks, with altered regularity of the estrous cycle, decreased serum estrogen (E2) and progesterone (P4) levels, reduced size of the primordial follicle pool, and increased number of atretic follicles. It was found that prenatal exposure to human-relevant doses of PrP exacerbated ovarian oxidative stress, inflammation, and fibrosis, which promoted follicular atresia by activating the mitochondrial apoptosis pathway. To compensate, the depletion of primordial follicles was also accelerated by activating the PI3K/AKT/mTOR signaling pathway in PrP-exposed mice. Moreover, PrP induced hypermethylation of CpG sites in the promoter region of Cyp11a1 (a 17.16–64.28% increase) partly led to the disrupted steroidogenesis, and the altered methylation levels of imprinted genes H19 and Peg3 may also contribute to the phenotypes observed. These remarkable findings highlight the embryonic origin of ovarian aging and suggest that a reduced use of PrP during pregnancy should be advocated.
اظهر المزيد [+] اقل [-]Biochemical profile and gene expression of Clarias gariepinus as a signature of heavy metal stress
2020
Swaleh, Sadiya Binte | Banday, Umarah Zahoor | Asadi, Moneeb-Al | Usmani, Nazura
Heavy metals have been found in increasing concentrations in the aquatic environment. Fishes exposed to such metals have altered gene expression, serum profiles, tissue histology and bioindices that serve as overall health biomarkers. The heavy metals (Ni, Cd, and Cr) accumulated in water and fish tissues, were beyond the permissible limits defined by the Central Pollution Control Board/World Health Organization. Metallothionein (MT) and glutathione peroxidase (GPX) genes expression patterns highlighted the metal-specific exposure of fish. An increased fold change of genes against beta-actin serves as a potential feature for toxicity. Metal toxicity is also reflected by an increased level of digestive enzymes (amylase and lipase) in the serum and alterations in values of reproductive hormones (11-Ketotestosterone and progesterone). Total serum bilirubin attribute to the liver and biliary tract disease in fishes. Histopathological studies show cellular degeneration, breakage, vacuolization signifying the chronic stress.
اظهر المزيد [+] اقل [-]Regulation of zebrafish (Danio rerio) locomotor behavior and circadian rhythm network by environmental steroid hormones
2018
Zhao, Yanbin | Zhang, Kun | Fent, Karl
Environmental exposure of fish to steroid hormones through wastewater and agricultural runoff may pose a health risk. Thus far, ecotoxicological studies have largely been focused on the disruption of the sex hormone system, but additional effects have been poorly investigated. Here we report on the effects of a series of different natural and synthetic steroid hormones on the locomotor behavior and the transcriptional levels of core clock genes in zebrafish eleuthero-embryos (Danio rerio). Of the 20 steroids analyzed, progestins and corticosteroids, including progesterone and cortisol, significantly decreased the locomotor activities of eleuthero-embryos at concentrations as low as 16 ng/L, while estrogens such as 17β-estradiol led to an increase. Consistently, progestins and corticosteroids displayed similar transcriptional effects on core clock genes, which were remarkably different from those of estrogens. Of these genes, per1a and nr1d2a displayed the most pronounced alterations. They were induced upon exposure to various progestins and corticosteroids and could be recovered using the progesterone receptor/glucocorticoid receptor antagonist mifepristone; this, however, was not the case for estrogens and the estrogen receptor antagonist 4-hydroxy-tamoxifen. Our results suggest that steroid hormones can modulate the circadian molecular network in zebrafish and provide novel insights into their mode of actions and potential environmental risks.
اظهر المزيد [+] اقل [-]Impact of inorganic ions and pH variations on toxicity and endocrine potential of selected environmentally relevant pharmaceuticals
2018
Wieczerzak, Monika | Kudłak, Błażej | Yotova, Galina | Tsakovski, Stefan | Simeonov, Vasil | Namieśnik, Jacek
Assessment of the impact of pharmaceutical residues on living organisms is a very complex subject. Apart from taking into account the toxicity of individual compounds, environmental factors should also be taken into account. In this paper, attempts were made to assess the impact of coexisting inorganic ions and changes in pH on the toxicity of ten selected pharmaceuticals. Two bioassays were used to measure the estrogenic and androgenic effects (XenoScreen YES/YAS – Saccharomyces cerevisiae) and acute toxicity (Microtox® – Vibrio fischeri).The Microtox® test gave the most definitive outputs concerning the determination of interaction type between drugs and chemical species. Synergism was proven for almost all drugs and chemical species, and only two cases of antagonism were found. Significant drug/pH interactions were rare.Regarding the XenoScreen YES/YAS bioassay, when estrogenic and androgenic agonistic effects (YES+ and YAS+, respectively) were studied, many cases of well-expressed synergism for all inorganic ions with limited number of drugs (diazepam, fluoxetine, estrone, chloramphenicol for the YES+ test and diazepam, progesterone, androstenedione, and estrone for the YAS+ test) were found. Antagonism was also proven for the YES+ test, especially for diclofenac and androstenedione interacting with cations. On the other hand, the YES- and YAS- tests (estrogenic and androgenic, respectively, antagonistic effects) did not indicate cases of synergetic interaction except for the couples Br−/diazepam and NH4+/ketoprofen. Antagonistic drug/ion interactions were detected only with diclofenac and fluoxetine. It is interesting that well-expressed (antagonism or synergism) drug/pH interactions were rare.Both tests were found utilizable in performing studies on impact of ions/pH fluctuations on drugs mixtures' toxicity confirming in most cases synergic impact of parameters studied on toxicity. The approach proposed in the paper seems to be proven as a reliable tool in assessing impact of abiotic factors on toxicity and endocrine potential of complex mixtures of pharmaceuticals' mixtures.
اظهر المزيد [+] اقل [-]Steroid bioaccumulation profiles in typical freshwater aquaculture environments of South China and their human health risks via fish consumption
2017
Liu, Shan | Xu, Xiang-Rong | Qi, Zhan-Hui | Chen, Hui | Hao, Qin-Wei | Hu, Yong-Xia | Zhao, Jian-Liang | Ying, Guang-Guo
More attention was previously paid to adverse effects of steroids on aquatic organisms and their ecological risks to the aquatic environment. So far, little information has been reported on the bioaccumulative characteristics of different classes of steroids in cultured fish tissues. The present study for the first time provided a comprehensive analysis of the occurrence, bioaccumulation, and global consumers’ health risks via fish consumption of androgens, glucocorticoids and progestanges in typical freshwater cultured farms in South China. The numbers and total concentrations of steroids detected in the tissues of five common species of the cultured fish were in the order of plasma > bile > liver > muscle and plasma > bile, muscle > liver, respectively. The field bioaccumulation factors for the detected synthetic steroids ranged from 450 to 97,000 in bile, 450 to 65,000 in plasma, 2900 to 16,000 in liver, and 42 to 2600 in muscle of fish, respectively. This data suggests that steroids are bioaccumulative in fish tissues. Mostly important, 4-androstene-3,17-dione (AED) and cortisone (CRN) were found to be reliable chemical indicators to predict the levels of steroids in plasma and muscle of the inter-species cultured fish, respectively. Furthermore, the maximum hazard quotients (HQs) of testosterone and progesterone were 5.8 × 10−4 and 9.9 × 10−5, suggesting that human health risks were negligible via ingestion of the steroids-contaminated fish.
اظهر المزيد [+] اقل [-]Drospirenone intake alters plasmatic steroid levels and cyp17a1 expression in gonads of juvenile sea bass
2016
Blanco, María | Fernandes, Denise | Medina, Paula | Blázquez, Mercedes | Porte, Cinta
Drospirenone (DRO) is one of the most widely used progestins in contraceptive treatments and hormone replacement therapies. The pharmacokinetics and potential toxicological effects of DRO were investigated in juvenile sea bass (Dicentrarchus labrax) exposed through the diet (0.01–10 μg DRO/g) for up to 31 days. DRO was detected in the blood (4–27 ng/mL) of fish exposed to the highest concentration, with no significant bioaccumulation over time and no alteration of hepatic metabolizing enzymes, namely, CYP1A and CYP3A-catalysed activities and UDP-glucuronyltransferase (UGT). Pregnenolone (P5), progesterone (P4), 17α-hydroxyprogesterone (17P4), 17α-hydroxypregnenolone (17P5), androstenedione (AD) and testosterone (T) were determined in plasma and gene expression of cyp17a1, cyp19a1a and cyp11β analysed by qRT-PCR in gonads. The significant increase in plasmatic levels of 17P5, 17P4 and AD detected after 31 days exposure to 10 ng DRO/g together with the increased expression of cyp17a1 in females evidence the ability of DRO to alter steroid synthesis at low intake concentrations (7 ng DRO/day). However, the potential consequences of this steroid shift for female reproduction remain to be investigated.
اظهر المزيد [+] اقل [-]Bisphenol AF blocks Leydig cell regeneration from stem cells in male rats
2022
Yu, Yige | Xin, Xiu | Ma, Feifei | Li, Xiaoheng | Wang, Yiyan | Zhu, Qiqi | Chen, Haiqiong | Li, Huitao | Ge, Ren-shan
Bisphenol A (BPA) is a ubiquitous environmental pollutant, mainly from the manufacture and use of plastics. The use of BPA is restricted, and its new analogs (including bisphenol AF, BPAF) are being produced to replace it. However, the effect of BPAF on the male reproductive system remains unclear. Here, we report the effect of BPAF on Leydig cell regeneration in rats. Leydig cells were eliminated by ethane dimethane sulfonate (EDS, i.p., 75 mg/kg) and the regeneration began 14 days after its treatment. We gavaged 0, 10, 100, and 200 mg/kg BPAF to rats on post-EDS day 7–28. BPAF significantly reduced serum testosterone and progesterone levels at ≧10 mg/kg. It markedly reduced serum levels of estradiol, luteinizing hormone, and follicle-stimulating hormone at 100 and 200 mg/kg. BPAF significantly reduced Leydig cell number at 200 mg/kg. BPAF significantly down-regulated the expression of Cyp17a1 at doses of 10 mg/kg and higher and the expression of Insl3, Star, Hsd17b3, Hsd11b1 in Leydig cells at 100 and 200 mg/kg, while it induced a significant up-regulation of Fshr, Dhh, and Sox9 in Sertoli cells at 200 mg/kg. BPAF induced oxidative stress and reduced the level of SOD2 at 200 mg/kg. It induced apoptosis and autophagy by increasing the levels of BAX, LC3B, and BECLIN1 and lowering the levels of BCL2 and p62 at 100 and 200 mg/kg. It induced autophagy possibly via decreasing the phosphorylation of AKT1 and mTOR. BPAF also significantly induced ROS production and apoptosis at a concentration of 10 μM, and reduced testosterone synthesis in rat R2C Leydig cells at a concentration of 10 μM in vitro, but did not affect cell viability after 24 h of treatment. In conclusion, BPAF is a novel endocrine disruptor, inhibiting the regeneration of Leydig cells.
اظهر المزيد [+] اقل [-]Prenatal exposure to triphenyl phosphate activated PPARγ in placental trophoblasts and impaired pregnancy outcomes
2022
Hong, Jiabin | Jiang, Mengzhu | Guo, Lihao | Lin, Juntong | Wang, Yao | Tang, Huanwen | Liu, Xiaoshan
The health risks of triphenyl phosphate (TPhP) have increased since its widespread application. Using placental trophoblast cell line JEG-3, we demonstrated that TPhP could induce endoplasmic reticulum stress (ERS) and cell apoptosis through PPARγ-mediated lipid metabolism. However, the developmental toxicity of TPhP through the placenta is not known. In this study, prenatal TPhP exposure to mice was investigated. Pregnant mice were orally exposed to TPhP (1 and 5 mg/kg) from embryonic day 0 (E0) until delivery. The results showed that TPhP could accumulate in placenta and impair pregnancy outcomes. After exposure, at E18, placental hormone chorionic gonadotrophin and testosterone levels were significantly decreased, but progesterone and estradiol levels were significantly increased, and placental angiogenesis was activated in the low-dose exposure group. While, in the high-dose exposure group, only estradiol levels were significantly increased. Different with the effect on hormone level or angiogenesis, TPhP significantly increased PPARγ and its regulated lipid transport proteins FABP, FATP, and CD36, and induced lipid accumulation in placental trophoblasts of both low- and high-exposure group. RNA-seq analysis of the placenta identified differentially expressed genes that were mainly involved in the ERS and MAPK signaling pathways. Western blot analysis verified that the protein levels related to ERS stress and apoptosis were significantly increased. To further confirm the role of PPARγ in TPhP mediated placental toxicity, pregnant mice were orally exposed to TPhP (1 mg/kg) or TPhP (1 mg/kg) + GW9662 (PPARγ inhibitor, 2 mg/kg) from E0 until delivery. The results showed that GW9662 could ameliorate the effect of TPhP on placental lipid accumulation, ERS and cell apoptosis, suggesting that PPARγ mediated the placental toxicity of TPhP. Overall, our results indicated that prenatal TPhP exposure impaired pregnancy outcomes, at least partly through PPARγ regulated function of trophoblast.
اظهر المزيد [+] اقل [-]Structural and functional analysis of the inhibition of equine glutathione transferase A3-3 by organotin endocrine disrupting pollutants
2021
Škerlová, Jana | Ismail, Aram | Lindström, Helena | Sjödin, Birgitta | Mannervik, Bengt | Stenmark, Pål
Organotin compounds are highly toxic environmental pollutants with neurotoxic and endocrine-disrupting effects. They are potent inhibitors of glutathione transferases (GSTs), thus impeding their detoxication and antioxidant functions. Several GSTs, including equine GST A3-3 (EcaGST A3-3), exhibit steroid double-bond isomerase activity and are involved in the biosynthesis of testosterone and progesterone. We have performed enzyme kinetics analyses of the inhibition of EcaGST A3-3 by organotin compounds. We have also solved crystal structures of EcaGST A3-3 in complexes with glutathione, and with glutathione together with covalently bound triethyltin. Our structural data indicate that the tin atom forms strong bonds with a covalent character not only with the glutathione, but also with a tyrosyl residue of the enzyme itself, thereby preventing the release of the glutathione-organotin adduct and completely blocking the enzyme function. This work presents a structural basis for the general mechanism of GST inhibition by organotin compounds and contributes to the understanding of their neurotoxic and endocrine disrupting effects.
اظهر المزيد [+] اقل [-]Can atmospheric pollutants influence menstrual cycle function?
2020
Giorgis-Allemand, L. | Thalabard, J.C. | Rosetta, L. | Siroux, V. | Bouyer, J. | Slama, R.
A few experimental studies suggest that atmospheric pollutants could affect the endocrine system, and in particular stress hormones and the hypothalamic-hypophyseal-ovarian axis, which could in turn influence menstrual cycle function. We aimed to study the possible short-term effects of atmospheric pollutants on the length of the follicular and luteal phases and on the duration of the menstrual cycle in humans. To do so, from a nation-wide study on couples’ fecundity, we recruited 184 women not using contraception who collected urine samples at least every other day during one menstrual cycle, from which a progesterone metabolite was assayed, allowing estimation of the duration of the follicular and luteal phases of the cycle. Atmospheric pollution (nitrogen dioxide and particulate matter with an aerodynamical diameter below 10 μm, PM₁₀) levels were estimated from a dispersion model with a 1-km resolution combined with permanent monitoring stations measurements, allowing to estimate exposures in the 30-day, 1–10 and 11-30-day periods before the start of the menstrual cycle. Regression models allowed to quantify the change in cycle duration associated with atmospheric pollutants and adjusted for potential confounders. Follicular phase duration increased on average by 0.7 day (95% confidence interval, CI, 0.2; 1.3) for each increase by 10 μg/m³ in NO₂ concentration averaged over the 30 days before the cycle and by 1.6 day (95% CI, 0.3; 2.9) for each increase by 10 μg/m³ in PM₁₀. There was no strong evidence of associations of exposures in this time window with luteal phase or with total menstrual cycle durations (p > 0.2). Exposures in the 1–10 day period before the cycle start were also associated with increased follicular phase duration. This study is one of the first prospective studies to suggest short-term alterations in follicular phase duration following atmospheric pollutants exposure.
اظهر المزيد [+] اقل [-]