خيارات البحث
النتائج 1 - 10 من 63
Insight into the uptake, accumulation, and metabolism of the fungicide phenamacril in lettuce (Lactuca sativa L.) and radish (Raphanus sativus L.)
2022
Tao, Yan | Xing, Yinghui | Jing, Junjie | Yu, Pingzhong | He, Min | Zhang, Jinwei | Chen, Li | Jia, Chunhong | Zhao, Ercheng
The fungal species Fusarium can cause devastating disease in agricultural crops. Phenamacril is an extremely specific cyanoacrylate fungicide and a strobilurine analog that has excellent efficacy against Fusarium. To date, information on the mechanisms involved in the uptake, accumulation, and metabolism of phenamacril in plants is scarce. In this study, lettuce and radish were chosen as model plants for a comparative analysis of the absorption, accumulation, and metabolic characteristics of phenamacril from a polluted environment. We determined the total amount of phenamacril in the plant-water system by measuring the concentrations in the solution and plant tissues at frequent intervals over the exposure period. Phenamacril was readily taken up by the plant roots with average root concentration factor ranges of 60.8–172.7 and 16.4–26.9 mL/g for lettuce and radish, respectively. However, it showed limited root-to-shoot translocation. The lettuce roots had a 2.8–12.4-fold higher phenamacril content than the shoots; whereas the radish plants demonstrated the opposite, with the shoots having 1.5 to 10.0 times more phenamacril than the roots. By the end of the exposure period, the mass losses from the plant-water systems reached 72.0% and 66.3% for phenamacril in lettuce and radish, respectively, suggesting evidence of phenamacril biotransformation. Further analysis confirmed that phenamacril was metabolized via hydroxylation, hydrolysis of esters, demethylation, and desaturation reactions, and formed multiple transformation products. This study furthers our understanding of the fate of phenamacril when it passes from the environment to plants and provides an important reference for its scientific use and risk assessment.
اظهر المزيد [+] اقل [-]Evaluation of mercury bioavailability to vegetables in the vicinity of cinnabar mine
2021
Pelcová, Pavlína | Ridošková, Andrea | Hrachovinová, Jana | Grmela, Jan
Knowledge of the concentration of the bioavailable forms of mercury in the soil is necessary, especially, if these soils contain above-limit total mercury concentrations. The bioavailability of mercury in soil samples collected from the vicinity of abandoned cinnabar mines was evaluated using diffusive gradients in the thin films technique (DGT) and mercury phytoaccumulation by vegetables (lettuce, spinach, radish, beetroot, carrot, and green peas). Mercury was accumulated primarily in roots of vegetables. The phytoaccumulation of mercury into edible plant parts was site-specific as well as vegetable species-specific. The mercury concentration in edible parts decreased in the order: spinach leaf ≥ lettuce leaf ≥ carrot storage root ≥ beetroot storage root > radish storage root > pea legume. The translocation index as well as the target hazard quotient indicate the possible usability of soils from the vicinity of abandoned cinnabar mines for planting pod vegetables (peas). A strong positive correlation (r = 0.75 to 0.92, n > 30, p < 0.05) was observed between mercury concentration in secondary roots, the storage roots, leaves of vegetables and the flux of mercury from soil to the DGT units, and the effective concentration of mercury in soil solutions.
اظهر المزيد [+] اقل [-]Prediction of organic contaminant uptake by plants: Modified partition-limited model based on a sequential ultrasonic extraction procedure
2019
Wu, Xiang | Zhu, Lizhong
Predicting the translocation of organic contaminants to plants is crucial to ensure the quality of agricultural goods and assess the risk of human exposure through the food web. In this study, the performance of a modified plant uptake model was evaluated considering a number of chemicals, such as polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs), with a range of physicochemical properties; different plant species (Ipomoea aquatica Forsk (swamp morning glory), Chrysanthemum coronarium L. (crown daisy), Zea mays L. (corn), Brassica rapa pekinensis (Chinese cabbage), Cucurbita moschata (pumpkin), Raphanus sativus L. (radish), Spinacia oleracea L. (spinach) and Capsicum annuum L. (pepper)); and different types of soil (paddy soil, laterite soil and black soil). The biases of predictions from a previously used partition-limited model were −76.4% to −99.9% relative to the measured concentrations. An overall transmission factor (αtf=0.39), calculated from a linear regression of the measured bioavailable fraction (Cbᵢₒ) and the total concentration in plants, was considered a crucial modification and was included in the modified model. Cbᵢₒ was found to better represent the chemical content available in soil for root uptake. The results from this study improve the accuracy of predictions for vegetation-uptake assessments by modifying the partition-limited model and then validating the modified model using comparisons between predicted data and measured values. The accuracy of the concentrations of organic contaminants in plants improved: when using the modified model, 89.5% of the predictions were within 40% of the actual value. The average bias was limited to 1.5%–30.5%. The model showed great potential to predict plant uptake using the bioavailable fraction concentration in soil.
اظهر المزيد [+] اقل [-]Nonstereoselective behavior of novel chiral organophosphorus pesticide Dufulin in cherry radish by different absorption methods
2022
Zheng, Ruonan | Shao, Siyao | Zhang, Subin | Yu, Zhiyang | Zhang, Weiwei | Wu, Tao | Zhou, Xin | Ye, Qingfu
Dufulin is a biologically derived antiviral agent chemically synthesized by α-phosphoramidate in sheep and is effective against viral diseases in plants such as tobacco, rice, cucumber and tomato. However, the environmental behaviors and fate of Dufulin under different cultivation systems remain unknown. This study investigates the absorption, translocation and accumulation of ¹⁴C-Dufulin stereoisomers introduced by pesticide leaf daubing and by mixing the pesticide with soil in different tissues of cherry radish. We particularly focused on whether the behaviors of Dufulin enantiomers in plants were stereoselective. In the leaf uptake experiments, S-Dufulin and R-Dufulin were transported both up and down, while more than 93% of the pesticide remained in the labeled leaves. During the radicular absorption experiments, both enantiomers of Dufulin were taken up by radish roots and moved to the upper part of the plant, while less than 0.2% Dufulin was absorbed from the soil. Hence, it was easier for Dufulin to enter plants through the leaf surface than through the roots. However, we found in this trial that the stereoisomers of Dufulin underwent nonstereoselective absorption and translocation, which implies that rac-Dufulin and its metabolites should be a major research priority. Overall, our results provide a relatively accurate prediction of the risk assessment of Dufulin, which will help guide its rational use in the environment as well as ensure eco-environmental safety and human health.
اظهر المزيد [+] اقل [-]Interception of radionuclides by planophile crops: A simple semi-empirical modelling approach in case of nuclear accident fallout
2020
Cristina, A. | Samson, R. | Horemans, N. | Van Hees, M. | Wannijn, J. | Bruggeman, M. | Sweeck, L.
Shortly after an atmospheric release, the interception of radionuclides by crop canopies represents the main uptake pathway leading to food chain contamination. The food chain models currently used in European emergency decision support systems require a large number of input parameters, which inevitably leads to high model complexity. In this study, we have established a new relationship for wet deposited radionuclides to simplify the current modelling approaches. This relationship is based on the hypothesis that the stage of plant development is the key factor governing the interception of radionuclides by crops having horizontally oriented leaves (planophile crops). The interception fraction (f) and the leaf area index normalized (fLAI) and mass normalized (fB) interception fractions were assessed for spinach (Spinacia oleracea) and radish (Raphanus sativus) at different stages of plant development and for different contamination treatments and plant densities. A database of 191 f values for Cs-137 and Th-229 was built and complemented with existing literature covering various radionuclides and crops with similar canopy structure. The overall f increased with the plant growth, while the reverse was observed for fB. The fLAI significantly decreased by doubling the contaminated rainfall deposited. Fitting a multiple linear regression to predict the f value as a function of the standing biomass (B), and the radionuclide form (anion and cation) led to a better estimation of the interception (R² = 81%) than the ECOSYS-87 model (R² = 35%). Hence, the simplified modelling approach here proposed seems to be a suitable risk assessment tool as fewer parameters will minimize the model complexity and facilitate the decision-making procedures in case of emergencies, when countermeasures need to be identified and implemented promptly.
اظهر المزيد [+] اقل [-]Assessing the uptake of arsenic and antimony from contaminated soil by radish (Raphanus sativus) using DGT and selective extractions
2016
Ngo, Lien K. | Pinch, Benjamin M. | Bennett, William W. | Teasdale, Peter R. | Jolley, Dianne F.
The enrichment of soil arsenic (As) and antimony (Sb) is putting increasing pressure on the environment and human health. The biogeochemical behaviour of Sb and its uptake mechanisms by plants are poorly understood and generally assumed to be similar to that of As. In this study, the lability of As and Sb under agricultural conditions in historically contaminated soils was assessed. Soils were prepared by mixing historically As and Sb-contaminated soil with an uncontaminated soil at different ratios. The lability of As and Sb in the soils was assessed using various approaches: the diffusive gradients in thin films technique (DGT) (as CDGT), soil solution analysis, and sequential extraction procedure (SEP). Lability was compared to the bioaccumulation of As and Sb by various compartments of radish (Raphanus sativus) grown in these soils in a pot experiment. Irrespective of the method, all of the labile fractions showed that both As and Sb were firmly bound to the solid phases, and that Sb was less mobile than As, although total soil Sb concentrations were higher than total soil As. The bioassay demonstrated low bioaccumulation of As and Sb into R. sativus due to their low lability of As and Sb in soils and that there are likely to be differences in their mechanisms of uptake. As accumulated in R. sativus roots was much higher (2.5–21 times) than that of Sb, while the Sb translocated from roots to shoots was approximately 2.5 times higher than that of As. As and Sb in R. sativus tissues were strongly correlated with their labile concentrations measured by DGT, soil solution, and SEP. These techniques are useful measures for predicting bioavailable As and Sb in the historically contaminated soil to R. sativus. This is the first study to demonstrate the suitability of DGT to measure labile Sb in soils.
اظهر المزيد [+] اقل [-]Identifying the critical nitrogen fertilizer rate for optimum yield and minimum nitrate leaching in a typical field radish cropping system in China
2021
Zhang, Jiajia | He, Ping | Ding, Wencheng | Ullah, Sami | Abbas, Tanveer | Li, Mingyue | Ai, Chao | Zhou, Wei
Nitrate leaching caused by overusing or misusing nitrogen (N) fertilizers in field vegetable cropping systems in China is a leading contributor to nitrate contamination of groundwater. Identification of the critical fertilizer N input rate could support management decisions that maintain yields while reducing the impact of nitrate leaching on groundwater. A four-season field experiment involving six N treatments (0, 60, 120, 180, 240, and 300 kg N ha⁻¹) was undertaken to investigate the impacts of various N rates on N use efficiency (NUE), seasonal nitrate leaching loss (SNLL), nitrate residue (NR), and radish yield, and to identify the critical N fertilizer rate for both optimum yield and minimum nitrate leaching loss in a field vegetable (radish, Raphanus sativus L.) cropping system in northern China. The results showed that radish yield enhanced quadratically and NUE reduced linearly with increasing N addition, while the NR and SNLL increased exponentially. The yield did not increase markedly when N fertilization exceeded 180 kg N ha⁻¹. SNLL and nitrate concentrations in the leachate averaged 11.5–71.5 kg N ha⁻¹ and 5.1–35.6 mg N L⁻¹, respectively, under N rates of 60–300 kg N ha⁻¹. The results showed that N fertilizer rate ranging from 180 to 196 kg N ha⁻¹ resulted in high yields and low nitrate leaching losses. Compared with those in response to the N fertilizer amount applied by local farmers, the NUE, NR, and SNLL in response to the N fertilizer amount identified in this study increased, decreased by 30.9%–35.0%, and decreased by 49.9%–55.7%, respectively, without any yield loss. Thus, a critical N fertilizer rate ranging from 180 to 196 kg N ha⁻¹ is recommended to obtain optimum yields with minimal environmental risks in radish fields in northern China.
اظهر المزيد [+] اقل [-]Irrigation of radish (Raphanus sativus L.) with microcystin-enriched water holds low risk for plants and their associated rhizopheric and epiphytic microbiome
2020
Petrou, M. | Karas, P.A. | Vasileiadis, S. | Zafiriadis, I. | Papadimitriou, T. | Levizou, E. | Kormas, K. | Karpouzas, D.G.
Microcystins (MCs) are toxins produced during cyanobacterial blooms. They reach soil and translocated to plants through irrigation of agricultural land with water from MC-impacted freshwater systems. To date we have good understanding of MC effects on plants, but not for their effects on plant-associated microbiota. We tested the hypothesis that MC-LR, either alone or with other stressors present in the water of the Karla reservoir (a low ecological quality and MC-impacted freshwater system), would affect radish plants and their rhizospheric and phyllospheric microbiome. In this context a pot experiment was employed where radish plants were irrigated with tap water without MC-LR (control) or with 2 or 12 μg L⁻¹ of pure MC-LR (MC2 and MC12), or water from the Karla reservoir amended (12 μg L⁻¹) or not with MC-LR. We measured MC levels in plants and rhizospheric soil and we determined effects on (i) plant growth and physiology (ii) the nitrifying microorganisms via q-PCR, (ii) the diversity of bacterial and fungal rhizospheric and epiphytic communities via amplicon sequencing. MC-LR and/or Karla water treatments resulted in the accumulation of MC in taproot at levels (480–700 ng g⁻¹) entailing possible health risks. MC did not affect plant growth or physiology and it did not impose a consistent inhibitory effect on soil nitrifiers. Karla water rather than MC-LR was the stronger determinant of the rhizospheric and epiphytic microbial communities, suggesting the presence of biotic or abiotic stressors, other than MC-LR, in the water of the Karla reservoir which affect microorganisms with a potential role (i.e. pathogens inhibition, methylotrophy) in the homeostasis of the plant-soil system. Overall, our findings suggest that MC-LR, when applied at environmentally relevant concentrations, is not expected to adversely affect the radish-microbiota system but might still pose risk for consumers’ health.
اظهر المزيد [+] اقل [-]Potential metabolism of pharmaceuticals in radish: Comparison of in vivo and in vitro exposure
2018
Li, Yuanbo | Chuang, Ya-Hui | Sallach, J Brett | Zhang, Wei | Boyd, Stephen A. | Li, Hui
Metabolism of pharmaceuticals in plants is important to evaluate their fate and accumulation in vegetables, and subsequently the risks to human health. However, limited knowledge is available to evaluate metabolism of pharmaceuticals in plants due to the lack of appropriate research approaches. In this study, radish was selected as a model plant to investigate metabolism of pharmaceuticals in intact plants (in vivo) growing in hydroponic solution and in plant tissue enzyme extracts (in vitro). For caffeine, six phase-I demethylation metabolites identified in the intact radish plant were also found in the plant enzyme extracts. After 7 days of in vivo exposure, the amount of the identified metabolites was about 5.4 times greater than the parent compound caffeine in radish roots. Furthermore, the metabolism potential of fifteen pharmaceuticals in radish was evaluated on the basis of mass balance. After 7 days of hydroponic exposure, oxytetracycline, trimethoprim, carbamazepine, lincomycin, monensin and tylosin manifested relatively less extent of metabolism with the mass recoveries ranging from 52.3 to 78.2%. In contrast, 17 β-estradiol, sulfamethoxazole, sulfadiazine, estrone, triclosan, acetaminophen, caffeine, carbadox and lamotrigine underwent extensive metabolism with only 3.0 to 32.1% of the parent compound recovered. In the in vitro system, 17 β-estradiol, estrone, triclosan, oxytetracycline, acetaminophen, sulfadiazine and sulfamethoxazole were readily metabolized in radish root enzyme extracts with 1.8 to 34.0% remaining after 96-h exposure. While in the leaf enzyme extracts, only triclosan was rapidly metabolized with 49.2% remaining, and others pharmaceuticals were ≥60%, indicating that the varying extents of metabolism occurred in different plant parts. This study highlights the importance of pharmaceutical metabolism in plants, and suggests that plant tissue enzyme extracts could serve as an alternative tool to assess pharmaceutical metabolism in plants.
اظهر المزيد [+] اقل [-]Effect of ambient-level gas-phase peroxides on foliar injury, growth, and net photosynthesis in Japanese radish (Raphanus sativus)
2010
Chen, Xuan | Aoki, Masatoshi | Takami, Akinori | Chai, Fahe | Hatakeyama, Shirō
To investigate the effects of ambient-level gas-phase peroxides concurrent with O3 on foliar injury, photosynthesis, and biomass in herbaceous plants, we exposed Japanese radish (Raphanus sativus) to clean air, 50 ppb O3, 100 ppb O3, and 2-3 ppb peroxides + 50 ppb O3 in outdoor chambers. Compared with exposure to 100 ppb O3, exposure to 2-3 ppb peroxides + 50 ppb O3 induced greater damage in foliar injury, net photosynthetic rates and biomass; the pattern of foliar injury and the cause of net photosynthetic rate reduction also differed from those occurring with O3 exposure alone. These results indicate for the first time that sub-ppb peroxides + 50 ppb O3 can cause more severe damage to plants than 100 ppb O3, and that not only O3, but also peroxides, could be contributing to the herbaceous plant damage and forest decline observed in Japan's air-polluted urban and remote mountains areas.
اظهر المزيد [+] اقل [-]