خيارات البحث
النتائج 1 - 10 من 105
Influence of activated biochar pellet fertilizer application on greenhouse gas emissions and carbon sequestration in rice (Oryza sativa L.) production
2021
Shin, JoungDu | Park, DoGyun | Hong, SeungGil | Jeong, Changyoon | Kim, Hyunook | Chung, W. (Woojin)
Supplemental activated biochar pellet fertilizers (ABPFs) were evaluated as a method to sequester carbon and reduce greenhouse gas (GHG) emissions, and improve rice production. The evaluated treatments were a control (standard cultivation method, no additives applied), activated rice hull biochar pellets with 40% of N (ARHBP-40%), and activated palm biochar pellets with 40% of N (APBP-40%). The N supplied by the ARHBP-40% and APBP-40% treatments reduced the need for supplemental inorganic nitrogen (N) fertilizer by 60 percent. The ARHBP-40% treatment sequestered as much as 1.23 tonne ha⁻¹ compared to 0.89 tonne ha⁻¹ in the control during the rice-growing season. In terms of greenhouse gas (GHG) emissions, CH₄ emissions were not significantly different (p > 0.05) between the control and the ARHBP-40%, while the lowest N₂O emissions (0.002 kg ha⁻¹) were observed in the ARHBP-40% during the crop season. Additionally, GHG (CO₂-equiv.) emissions from the ARHBP-40% application were reduced by 10 kg ha⁻¹ compared to the control. Plant height in the control was relatively high compared to others, but grain yield was not significantly different among the treatments. The application of the ARHBP-40% can mitigate greenhouse gas emissions and enhance carbon sequestration in crop fields, and ABPFs can increase N use efficiency and contribute to sustainable agriculture.
اظهر المزيد [+] اقل [-]Biochar composite with microbes enhanced arsenic biosorption and phytoextraction by Typha latifolia in hybrid vertical subsurface flow constructed wetland
2021
Irshad, Sana | Xie, Zuoming | Kāmrān, Muḥammad | Nawaz, Asad | Faheem, | Mehmood, Sajid | Gulzar, Huma | Saleem, Muhammad Hamzah | Rizwan, Muhammad | Malik, Zaffar | Parveen, Aasma | Ali, Shafaqat
Arsenic contamination of ground water is a worldwide issue, causing a number of ailments in humans. As an engineered and integrated solution, a hybrid vertical subsurface flow constructed wetland (VSSF-CW) amended with BCXZM composite (Bacillus XZM immobilized on rice husk biochar), was found effective for the bioremediation of arsenic contaminated water. Biological filter was prepared by amending top 3 cm of VSSF-CW bed with BCXZM. This filter scavenged ∼64% of total arsenic and removal efficiency of ∼95% was achieved by amended and planted (As + P + B) VSSF-CW, while non-amended (As + P) VSSF-CW showed a removal efficiency of ∼55%. The unplanted and amended (As + B) VSSF-CW showed a removal efficiency of ∼70%. The symbiotic association of Bacillus XZM, confirmed by SEM micrographs, significantly (p ≤ 0.05) reduced reactive oxygen species (ROS) and malondialdehyde (MDA) accumulation in Typha latifolia, hence, increasing the plant growth (2 folds). An increase in the indole acetic acid (IAA) and arsenic accumulation in plant was also observed in As + P + B system. The removal efficiency of the system was compromised after 4th consecutive cycle and 48 h was observed as optimum retention time. The FTIR-spectra showed the involvement of -N-H bond, carboxylic acids, –CH₂ stretching of –CH₂ and –CH₃, carbonyl groups, -C-H, C–O–P and C–O–C, sulphur/thiol and phosphate functional groups in the bio-sorption of arsenic by BCXZM filter. Our study is a first reported on the simultaneous phytoextraction and biosorption of arsenic in a hybrid VSSF-CW. It is proposed that BCXZM can be applied effectively in CWs for the bioremediation of arsenic contaminated water on large scale.
اظهر المزيد [+] اقل [-]A novel clean production approach to utilize crop waste residues as co-diet for mealworm (Tenebrio molitor) biomass production with biochar as byproduct for heavy metal removal
2019
Yang, Shanshan | Chen, Yi-di | Zhang, Ye | Zhou, Hui-Min | Ji, Xin-Yu | He, Lei | Xing, De-Feng | Ren, Nan-Qi | Ho, Shih-Hsin | Wu, Weimin
Proper management of waste crop residues has been an environmental concern for years. Yellow mealworms (larvae of Tenebrio molitor Linnaeus, 1758) are major insect protein source. In comparison with normal feed wheat bran (WB), we tested five common lignocellulose-rich crop residues as feedstock to rear mealworms, including wheat straw (WS), rice straw (RS), rice bran (RB), rice husk (RH), and corn straw (CS). We then used egested frass for the production of biochar in order to achieve clean production. Except for WS and RH, the crop residues supported mealworms’ life activity and growth with consumption of the residues by 90% or higher and degraded lignin, hemicellulose and cellulose over 32 day period. The sequence of degradability of the feedstocks is RS > RB > CS > WS > RH. Egested frass was converted to biochar which was tested for metal removal including Pb(II), Cd(II), Cu(II), Zn(II), and Cr(VI). Biochar via pyrolysis at 600 °C from RS fed frass (FRSBC) showed the best adsorption performance. The adsorption isotherm fits the Langmuir model, and kinetic analysis fits the Pseudo-Second Order Reaction. The heavy metal adsorption process was well-described using the Intra-Particle Diffusion model. Complexation, cation exchange, precipitation, reduction, deposition, and chelation dominated the adsorption of the metals onto FRSBC. The results indicated that crop residues (WS, RS, RB, and CS) can be utilized as supplementary feedstock along with biochar generated from egested frass to rear mealworms and achieve clean production while generating high-quality bioadsorbent for environment remediation and soil conditioning.
اظهر المزيد [+] اقل [-]The removal of arsenic from solution through biochar-enhanced precipitation of calcium-arsenic derivatives
2022
Zama, Eric F. | Li, Gang | Tang, Yu-Ting | Reid, Brian J. | Ngwabie, Ngwa M. | Sun, Guo-Xin
Arsenic (As) pollution remains a major threat to the quality of global soils and drinking water. The health effects of As pollution are often severe and have been largely reported across Asia and South America. This study investigated the possibility of using unmodified biochar derived from rice husk (RB) and aspen wood (WB) at 400 °C and 700 °C to enhance the precipitation of calcium/arsenic compounds for the removal of As(III) from solution. The approach was based on utilizing calcium to precipitate arsenic in solution and adding unmodified biochar to enhance the process. Using this approach, As(III) concentration in aqueous solution decreased by 58.1% when biochar was added, compared to 25.4% in the absence of biochar. Varying the pH from acidic to alkaline enabled an investigation into the pH dependent dynamics of the approach. Results indicated that significant precipitation was only possible at near neutral pH (i.e. pH = 6.5) where calcium arsenites (i.e. Ca(AsO₂)₂, and CaAsO₂OH•½H₂O) and arsenates (i.e. Ca₅(AsO₄)₃OH) were precipitated and deposited as aggregates in the pores of biochars. Arsenite was only slightly precipitated under acidic conditions (pH = 4.5) while no arsenite was precipitated under alkaline conditions (pH = 9.5). Arsenite desorption from wood biochar was lowest at pH 6.5 indicating that wood biochar was able to retain a large quantity of the precipitates formed at pH 6.5 compared to pH 4.5 and pH 9.5. Given that the removal of As(III) from solution is often challenging and that biochar modification invites additional cost, the study demonstrated that low cost unmodified biochar can be effective in enhancing the removal of As(III) from the environment through Ca–As precipitation.
اظهر المزيد [+] اقل [-]Adsorptive removal of metformin on specially designed algae-lignocellulosic biochar mix and techno-economic feasibility assessment
2022
De Bhowmick, Goldy | Briones, Rowena M. | Thiele-Bruhn, Sören | Sen, Ramkrishna | Sarmah, Ajit K.
Batch sorption of metformin hydrochloride (MET) onto a specially designed biochar mix consisting of both macro (MAC) and micro (MIC) algae, rice husk and pine sawdust was conducted. Pyrolysis of both MAC and MIC algae mixture was done followed by chemical activation with hydrogen-peroxide. Additionally, sorption of MET under the influence of pH was separately investigated. Batch studies of isotherms were well described by Freundlich model with high non-linearity and Freundlich exponent values ranged anywhere from 0.12 to 1.54. Heterogeneity of MET adsorption to the bonding sites was attributed to the surface functional groups of the modified biochar. Amongst the four biochars, the activated macroalgae biochar (MACAC) and microalgae biochar (MICAC) depicted favourable adsorption of MET with maximum adsorption at pH 7. Up to 76% of MET removal from the environment was obatained using the MACAC biochar. Scanning electron micrographs coupled with energy dispersive X-ray, as well as elemental analyses confirmed formation of oxygen containing surface functional groups due to activation strengthening chemisorption as the main sorption mechanism. Further, Fourier transform infra-red spectroscopy and other surface functional group analyses along with Zeta potential measurements reinforced our proposed sorption mechanism. Lowest zeta potential observed at pH 7 enhanced the electrostatic force of attraction for both the biochars. Negative zeta potential value of the biochars under different pH indicated potential of the biochars to adsorb other positively charged contaminants. From a techno-economic perspective, capital expenditure cost is not readily available, however, it is envisaged that production of pyrolyzed biochar from algal biomass could make the process economically attractive especially when the biochar could be utilised for high-end applications.
اظهر المزيد [+] اقل [-]Supramolecular bioamphiphile facilitated bioemulsification and concomitant treatment of recalcitrant hydrocarbons in petroleum refining industry oily waste
2022
Venkatesan, Swathi Krishnan | Uddin, Maseed | Rajasekaran, Muneeswari | Ramani Kandasamy, | Ganesan, Sekaran
Bioremediation of real-time petroleum refining industry oily waste (PRIOW) is a major challenge due to the poor emulsification potential and oil sludge disintegration efficiency of conventional bioamphiphile molecules. The present study was focused on the design of a covalently engineered supramolecular bioamphiphile complex (SUBC) rich in hydrophobic amino acids for proficient emulsification of hydrocarbons followed by the concomitant degradation of total petroleum hydrocarbons (TPH) in PRIOW using the hydrocarbonoclastic microbial bio-formulation system. The synthesis of SUBC was carried out by pH regulated microbial biosynthesis process and the yield was obtained to be 450.8 mg/g of petroleum oil sludge. The FT-IR and XPS analyses of SUBC revealed the anchoring of hydrophilic moieties of monomeric bioamphiphilic molecules, resulting in the formation of SUBC via covalent interaction. The SUBC was found to be lipoprotein in nature. The maximum loading capacity of SUBC onto surface modified rice hull (SMRH) was achieved to be 45.25 mg/g SMRH at the optimized conditions using RSM-CCD design. The SUBC anchored SMRH was confirmed using SEM, FT-IR, XRD and TGA analyses. The adsorption isotherm models of SUBC onto SMRH were performed. The integrated approach of SUBC-SMRH and hydrocarbonoclastic microbial bio-formulation system, emulsified oil from PRIOW by 92.86 ± 2.26% within 24 h and degraded TPH by 89.25 ± 1.75% within 4 days at the optimum dosage ratio of SUBC-SMRH (0.25 g): PRIOW (1 g): mass of microbial-assisted biocarrier material (0.05 g). The TPH degradation was confirmed by SARA fractional analysis, FT-IR, ¹H NMR and GC-MS analyses. The study suggested that the application of covalently engineered SUBC has resulted in the accelerated degradation of real-time PRIOW in a very short duration without any secondary sludge generation. Thus, the SUBC integrated approach can be considered to effectively manage the hydrocarbon contaminants from petroleum refining industries under optimal conditions.
اظهر المزيد [+] اقل [-]Biochar ageing in polluted soils and trace elements immobilisation in a 2-year field experiment
2021
Campos, Paloma | Knicker, Heike | Miller, Ana Z. | Velasco-Molina, Marta | De la Rosa, José María
Biochar application to soils has become a focus of research during the last decade due to its high potential for C sequestration. Nevertheless, there is no exhaustive information on the long-term effects of biochar application in soils contaminated with trace elements. In this work, a 2-year field experiment was conducted comprising the application of different types of biochar to acidic and moderately acidic soils with high concentrations of As, Cu, Pb, Ba and Zn. In addition, representative samples of each biochar were buried in permeable bags that allowed the flow of water and microorganisms but not their physical interaction with soil aggregates. The biochars significantly adsorbed trace elements from polluted soils. However, given the high total concentration of these persistent trace elements in the soils, the application of biochars did not succeed in reducing the concentration of available metals (CaCl₂ extractable fraction). After 2 years of ageing under field conditions, some degradation of the biochars from olive pit, rice husk and wood were observed. This study provides novel information concerning the biochar alterations during ageing in polluted soils, as the decrease of aryl C signal observed by ¹³C nuclear magnetic resonance (NMR) spectroscopy and the presence of O-containing groups shown by Fourier Transform mid-Infrared Spectroscopy (FT-IR) in aged biochar which enhanced trace elements adsorption. Scanning electron microscopy (SEM) revealed slight changes on surface morphology of aged biochar particles.
اظهر المزيد [+] اقل [-]Speciation and location of arsenic and antimony in rice samples around antimony mining area
2019
Wu, Tong-Liang | Cui, Xiao-Dan | Cui, Pei-Xin | Ata-Ul-Karim, Syed Tahir | Sun, Qian | Liu, Cun | Fan, Ting-Ting | Gong, Hua | Zhou, Dong-Mei | Wang, Yurun
Arsenic (As) and antimony (Sb) are considered as priority environmental pollutants and their accumulation in crop plants particularly in rice has posed a great health risk. This study endeavored to investigate As and Sb contents in paired soil-rice samples obtained from Xikuangshan, the world largest active Sb mining region, situated in China, and to investigate As speciation and location in rice grains. The soil and rice samples were analyzed by coupling the wet chemistry, laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS), synchrotron-based micro X-ray fluorescence mapping (μ-XRF) and micro X-ray absorption near-edge structure (μ-XANES) spectroscopy. The results of field survey indicated that the paddy soil in the region was co-polluted by Sb (5.91–322.35 mg kg−1) and As (0.01–57.21 mg kg−1). Despite the higher Sb concentration in the soil, rice accumulated more As than Sb indicating the higher phytoavailability of As. Dimethylarsinic acid (DMA) was the predominant species (>60% on average) in the rice grains while the percentage of inorganic As species was 19%–63%. The μ-XRF mapping of the grain section revealed that the most of As was distributed and concentrated in rice husk, bran and embryo. Sb was distributed similarly to As but was not in the endosperm of rice grain based on LA-ICP-MS. The present results deepened our understanding of the As/Sb co-pollution and their association with the agricultural-product safety in the vicinity of Sb mining area.
اظهر المزيد [+] اقل [-]Effects of biochar amendment on the soil silicon cycle in a soil-rice ecosystem
2019
Wang, Yaofeng | Xiao Xin, | Zhang, Kun | Chen, Baoliang
For the soil-plant ecosystem, knowledge about the effects of biochars on the soil silicon (Si) cycle is still tenuous. In this study, the effect of biochars on the yield, Si uptake and Si distribution within different tissues of rice plants and the soil Si cycles in a soil-plant system were investigated. Si-rich (RH300-700) and Si-deficient (WB300-700) biochars prepared from rice husk and wood sawdust were applied to high-Si soil (HSS) and low-Si soil (LSS). Biochar addition increased the yield of grain and straw and had no effect on the yield of root, and the increase in the yield with Si-rich biochars was obvious; this effect had a high response to LSS. Si-rich biochars increased the plant Si content of grain and root and had no effect on straw. RH300 amendment increased the Si concentration in grains, compared to RH500 and RH700. The addition of Si-deficient biochar to HSS had little effect on the Si content, while Si-deficient biochar-amended LSS had a great impact on the reduced Si content in rice straw and root, and WB700 decreased the Si concentration in grains, compared to WB300 and WB500. Finally, the Si-rich biochars increased the total Si uptake within rice, while Si-deficient biochars decreased the total Si uptake in LSS. According to the FTIR and SEM-EDX spectra of biochars before and after rice harvest, a new band of SiOSi at 471 cm⁻¹ was found after aged WB700, and the minerals of iron and Si were found on the surface of aged WB700; biochars can fix the dissolved Si on its surface as a temporary store to prevent Si loss. Therefore, biochars can be considered reservoirs of soil Si, which is a slow release source of available Si, to impact the speed of biogeochemical cycling of soil Si in agricultural paddy soil.
اظهر المزيد [+] اقل [-]Resource utilization of rice husk biomass: Preparation of MgO flake-modified biochar for simultaneous removal of heavy metals from aqueous solution and polluted soil
2022
Li, Anyu | Xie, Hanquan | Qiu, Ying | Liu, Lihu | Lu, Tao | Wang, Weihua | Qiu, Guohong
In general, the remediation performance of heavy metals can be further improved by metal-oxide modified biochar. This work used MgO-modified rice husk biochar (MgO-5%@RHB-450 and MgO-5%@RHB-600) with high surface activity for simultaneous remediation and removal of heavy metals in soil and wastewater. The adsorption of MgO-5%@RHB-450/MgO-5%@RHB-600 for Cd(II), Cu(II), Zn(II) and Cr(VI) followed the pseudo-second order, with the adsorption capacities reaching 91.13/104.68, 166.68/173.22, 80.12/104.38 and 38.88/47.02 mg g⁻¹, respectively. The addition of 1.0% MgO-5%@RHB-450 and MgO-5%@RHB-600 could effectively decrease the CaCl₂-extractable Cd concentration (CaCl₂–Cd) by 66.2% and 70.0%, respectively. Moreover, MgO-5%@RHB-450 and MgO-5%@RHB-600 facilitated the transformation of exchangeable fractions to carbonate-bound and residual fractions, and reduced the exchangeable fractions by 8.1% and 9.6%, respectively. The mechanisms for the removal of heavy metals from wastewater by MgO-5%@RHB-450 and MgO-5%@RHB-600 mainly included complexation, ion exchange and precipitation, and the immobilization mechanisms in soil may be precipitation, complexation and pore filling. In general, this study provides high-efficiency functional materials for the remediation of heavy metal pollution.
اظهر المزيد [+] اقل [-]