خيارات البحث
النتائج 1 - 10 من 451
Long-distance transport of per- and polyfluoroalkyl substances (PFAS) in a Swedish drinking water aquifer
2022
Sörengård, Mattias | Bergström, Sofia | McCleaf, Philip | Wiberg, Karin | Ahrens, Lutz
Use of per- and polyfluoroalkyl substance (PFAS)-containing aqueous film-forming foams (AFFF) at firefighting training sites (FFTS) has been linked to PFAS contamination of drinking water. This study investigated PFAS transport and distribution in an urban groundwater aquifer used for drinking water production that has been affected by PFAS-containing AFFF. Soil, sediment, surface water and drinking water were sampled. In soil (n = 12) at a FFTS with high perfluorooctane sulfonate (PFOS) content (87% of ∑PFAS), the ∑PFAS concentration (n = 26) ranged from below detection limit to 560 ng g⁻¹ dry weight. In groundwater (n = 28), the ∑PFAS concentration near a military airbase FFTS reached 1000 ng L⁻¹. Principal component analysis (PCA) identified the military FFTS as the main source of PFAS contamination in drinking water wellfields >10 km down-gradient. Groundwater samples taken close to the military FFTS site showed no ∑PFAS concentration change between 2013 and 2021, while a location further down-gradient showed a transitory 99.6% decrease. Correlation analysis on PFAS composition profile indicated that this decrease was likely caused by dilution from an adjacent conflating aquifer. ∑PFAS concentration reached 15 ng L⁻¹ (PFOS 47% and PFHxS 41% of ∑PFAS) in surface river water (n = 6) and ranged between 1 ng L⁻¹ and 8 ng L⁻¹ (PFHxS 73% and PFBS 17% of ∑PFAS) in drinking water (n = 4). Drinking water had lower PFAS concentrations than the wellfields due to PFAS removal at the water treatment plant. This demonstrates the importance of monitoring PFAS concentrations throughout a groundwater aquifer, to better understand variations in transport from contamination sources and resulting impacts on PFAS concentrations in drinking water extraction areas.
اظهر المزيد [+] اقل [-]Seasonal distribution of antibiotic resistance genes in the Yellow River water and tap water, and their potential transmission from water to human
2022
Yu, Qiaoling | Feng, Tianshu | Yang, Jiawei | Su, Wanghong | Zhou, Rui | Wang, Yijie | Zhang, Hong | Li, Huan
The prevalence and transmission of antibiotic resistance genes (ARGs) and opportunistic pathogens in water environments can pose great threat to public health. However, the dissemination of ARGs and opportunistic pathogens from water environments to humans has been poorly explored. Here, we employed 16S rRNA gene sequencing and high-throughput quantitative PCR techniques to explore the seasonal distribution of ARGs and opportunistic pathogens in the Yellow River water (source water) and tap water, as well as their relationships with healthy humans at Lanzhou, China. Physiochemical analysis was applied to detect water quality parameters and heavy metal contents. The absolute abundance and diversity of ARGs in the Yellow River and tap water demonstrated distinct seasonal patterns. In winter, the Yellow river water had the highest ARG abundance and diversity, while tap water owned the lowest. Mobile genetic elements (MGEs) were the predominant driver of ARG profiles in both the Yellow river and tap water. Null model analysis showed that ARG assembly in the Yellow River was more influenced by stochastic processes than tap water and this was independent of seasons. Total organic carbon and arsenic contents exhibited positive correlations with many ARGs. Opportunistic pathogens Aeromonas and Pseudomonas may be potential hosts for ARGs. Approximately 80% of detected ARGs were shared between water samples and the human gut. These persistent ARGs could not be entirely eliminated through drinking water treatment processes. Thus, it is crucial to protect sources of tap water from anthropogenic pollution and improve water treatment technologies to reduce the dissemination of ARGs and ensure drinking-water biosafety for human health.
اظهر المزيد [+] اقل [-]Microplastics across biomes in diadromous species. Insights from the critically endangered Anguilla anguilla
2022
Menéndez, Daniel | Álvarez, Almudena | Acle, Susana | Peón, Paloma | Ardura, Alba | García Vázquez, Eva
Microplastic pollution affects freshwater and marine biota worldwide, microplastics occurring even inside the organisms. With highly variable effects, from physical damage to toxicity of plastic compounds, microplastics are a potential threat to the biodiversity, community composition and organisms' health. This emerging pollutant could overstress diadromous species, which are exposed to both sea and river water in their life cycle. Here we have quantified microplastics in young European eel Anguilla anguilla, a critically endangered catadromous fish, entering three rivers in southwestern Bay of Biscay. River water, sediments and seawater were also analysed for microplastics. The microplastic type was identified using Fournier-Transform Infrared spectroscopy and then searched for their hazard potential at the European Chemical Agency site. Both riverine and sea microplastic pollution were predictors of eels’ microplastic profile (types of microplastics by shape and colour): A. anguilla juveniles entering European rivers already carry some marine microplastics and acquire more from river water. Potentially hazardous plastic materials were found from eels, some of them dangerous for aquatic life following the European Chemical Agency. This confirms microplastics as a potential threat for the species. Between-rivers differences for microplastics profiles persistent over years highlight the convenience of analysing and preventing microplastics at a local spatial scale, to save diadromous species from this stressor. Since the origin of microplastics present in glass eels seems to be dual (continental + seawater), new policies should be promoted to limit the entry of microplastics in sea and river waters.
اظهر المزيد [+] اقل [-]Spatial distribution and potential sources of microplastics in the Songhua River flowing through urban centers in Northeast China
2022
Ma, Min | Liu, Shibo | Su, Meng | Wang, Chi | Ying, Zhian | Huo, Mingxin | Lin, Yingzi | Yang, Wu
Microplastics (MPs) have elicited increasing concerns in freshwater systems worldwide. However, little information is available on the MP pollution in the Songhua River, the third largest river in China. And the understanding of the sources and pathways of MPs is limited. In this study, MPs were sampled from river water and wastewater treatment plants in five cities along the Songhua River to investigate the occurrence, spatial distribution, characteristics, and potential sources of MPs. Polyethylene, polypropylene and polystyrene accounted for more than 95% of the total MPs. MP pollution was determined to be spatially heterogeneous. The concentration of MPs in the urban center was always considerably higher than that in the upper reach, and irregular variation was observed from the urban center to the lower reach for each city. Urbanization was one of the primary driving forces of spatial variability. Statistically significant positive correlations (p-value < 0.05) were noted between the average concentration of MPs in river water and population density (p = 0.0023) and number of industrial enterprises above designated size (p = 0.0042) of each city. Line and fiber were the major shapes, and white was the most dominant color. Large (1–5 mm) and small (≤ 1 mm) MP particles accounted for 50% each. Multiple correspondence analysis as a new methodological approach was conducted to elucidate the sources of MPs for the first time. The potential sources of MPs included daily use, fishing, agricultural, and industrial productions. This work provides information about MP contamination for future studies on freshwater systems and new insights into the source apportionment of MPs.
اظهر المزيد [+] اقل [-]A source-sink landscape approach to mitigation of agricultural non-point source pollution: Validation and application
2022
Yu, Wanqing | Zhang, Jing | Liu, Lijuan | Li, Yan | Li, Xiaoyu
Optimizing landscape pattern to reduce the risk of non-point source (NPS) pollution is an effective measure to improve river water quality. The “source-sink” landscape theory is a recent research tool for landscape pattern analysis that can effectively integrate landscape type, area, spatial location, and topographic features to depict the spatial heterogeneity of NPS pollution. Based on this theory, we quantitatively analyzed the influence of “source-sink” landscape pattern on the river water quality in one of the most intensive agricultural watersheds in Southeastern China. The results indicated that the proportion of “sink” landscape (68.59%) was greater than that of “source” landscape (31.41%) in the study area. In addition, when elevation and slope increased, the “source” landscape proportion decreased, and the “sink” landscape proportion increased. Nitrogen (N) and phosphorus (P) pollutants in rivers showed significant seasonal and spatial variations. Farmland was the primary source of nitrate nitrogen (NO₃⁻-N) and total nitrogen (TN) pollution, whereas residential land was the primary source of ammonium nitrogen (NH₄⁺-N) and total phosphorus (TP) pollution. Intensively cultivated areas and densely inhabited areas degraded water quality despite high proportions of forest land. The four “source-sink” landscape indices (LWLI, LWLI'e, LWLI's, LWLI'd) had significant positive correlations with NO₃⁻-N and TN and weak correlations with NH₄⁺-N and TP. The capacity of LWLI to quantify the NPS pollution was greater in agricultural areas than in residential areas. The “source-sink” landscape thresholds resulted in abrupt changes in water quality. When LWLI was ∼0.35, the probability of river water quality degradation increased sharply. The results suggest the importance of optimizing the “source-sink” landscape pattern for mitigating agricultural NPS pollution and provide policy makers with adequate new information on the agroecosystem-environmental interface in highly developed agricultural watersheds.
اظهر المزيد [+] اقل [-]Microplastic pollution in the Yangtze River Basin: Heterogeneity of abundances and characteristics in different environments
2021
Zhang, Zeqian | Deng, Chenning | Dong, Li | Liu, Lusan | Li, Haisheng | Wu, Jia | Ye, Chenlei
Microplastic pollution in the Yangtze River Basin has become a major concern; however, the variations in different environmental compartments are unknown. Here, we compiled published information including detection methods, occurrence, and characterization of microplastics from 624 sampling sites in river water, river sediment, lake and reservoir water, and lake and reservoir sediment in the Yangtze River Basin. The spatial distribution of sampling sites shows fractal pattern and was uniformly concentrated around the main stream of the Yangtze River and the lake geographical zone. Collection, pretreatment, identification, and quantification processes varied among different studies. Non-parametric tests were performed to compare the different microplastic indices. A Pearson correlation analysis was used to study the relationship between microplastic pollution and local socioeconomic conditions. We found that the microplastic size and abundance distribution in river water and lake and reservoir water showed different patterns for different sampling methods, indicating that different methods influenced the results. Population density and urbanization rate are suggested to be important factors influencing the spatial heterogeneity of microplastic abundances in water, rather than in sediment. The microplastic abundances in lake and reservoir water were higher than that in river water in bulk samples. However, microplastic abundances among different sediment environments shows no significant difference. For bulk water samples and sediment samples overall, the proportion of small microplastics (<1 mm, i.e. SMP), fibers, transparent debris, and polypropylene (PP) were 65.1%, 67.8%, 31.8%, and 29.7%, respectively. The microplastic characteristics of lake and reservoir water and sediment were similar, differing from those of river water and sediment. This study provides the first basin scale insight into microplastic occurrence and characteristics in different environments in the Yangtze River Basin.
اظهر المزيد [+] اقل [-]Distribution of antibiotics in water, sediments and biofilm in an urban river (Córdoba, Argentina, LA)
2021
Valdés, M Eugenia | Santos, Lúcia H.M.L.M. | Rodríguez Castro, M Carolina | Giorgi, Adonis | Barceló, Damià | Rodríguez-Mozaz, Sara | Amé, M Valeria
In this study, we evaluated the distribution of up to forty-three antibiotics and 4 metabolites residues in different environmental compartments of an urban river receiving both diffuse and point sources of pollution. This is the first study to assess the fate of different antibiotic families in water, biofilms and sediments simultaneously under a real urban river scenario. Solid phase extraction, bead-beating disruption and pressurized liquid extraction were applied for sample preparation of water, biofilm and sediment respectively, followed by the quantification of target antibiotics by UPLC-ESI-MS/MS. Twelve antibiotics belonging to eight chemical families were detected in Suquía River samples (67% positive samples). Sites downstream the WWTP discharge were the most polluted ones. Concentrations of positive samples ranged 0.003-0.29 µg L⁻¹ in water (max. cephalexin), 2-652 µg kg⁻¹d.w. in biofilm (max. ciprofloxacin) and 2-34 µg kg⁻¹d.w. in sediment (max. ofloxacin). Fluoroquinolones, macrolides and trimethoprim were the most frequently detected antibiotics in the three compartments. However cephalexin was the prevalent antibiotic in water. Antibiotics exhibited preference for their accumulation from water into biofilms rather than in sediments (bioaccumulation factors > 1,000 L kg⁻¹d.w. in biofilms, while pseudo-partition coefficients in sediments < 1,000 L kg⁻¹d.w.). Downstream the WWTP there was an association of antibiotics levels in biofilms with ash-free dry weight, opposite to chlorophyll-a (indicative of heterotrophic communities). Cephalexin and clarithromycin in river water were found to pose high risk for the aquatic ecosystem, while ciprofloxacin presented high risk for development of antimicrobial resistance. This study contributes to the understanding of the fate and distribution of antibiotic pollution in urban rivers, reveals biofilm accumulation as an important environmental fate, and calls for attention to government authorities to manage identified highly risk antibiotics.
اظهر المزيد [+] اقل [-]Biological selenite removal and recovery of selenium nanoparticles by haloalkaliphilic bacteria isolated from the Nakdong River
2021
Won, Sangmin | Ha, Myung-Gyu | Nguyen, Dinh Duc | Kang, Ho Young
Microbial selenite reduction has increasingly attracted attention from the scientific community because it allows the separation of toxic Se from waste sources with the concurrent recovery of Se nanoparticles, a multifunctional material in nanotechnology industries. In this study, four selenite-reducing bacteria, isolated from a river water sample, were found to reduce selenite by > 85% within 3 d of incubation, at ambient temperature. Among them, strain NDSe-7, belonging to genus Lysinibacillus, can reduce selenite and produce Se nanospheres in alkaline conditions, up to pH 10.0, and in salinity of up to 7.0%. This strain can reduce 80 mg/L of selenite to elemental Se within 24 h at pH 6.0–8.0, at a temperature of 30–40 °C, and salinity of 0.1–3.5%. Strain NDSe-7 exhibited potential for use in Se removal and recovery from industrial saline wastewater with high alkalinity. This study indicates that extremophilic microorganisms for environmental remediation can be found in a conventional environment.
اظهر المزيد [+] اقل [-]Tissue-specific distribution and bioaccumulation of cyclic and linear siloxanes in South Korean crucian carp (carassius carassius)
2021
Wang, Wenting | Cho, Hyeon-Seo | Kim, Kyungtae | Park, Kyunghwa | Oh, Jeong-Eun
The occurrence and distribution of cyclic and linear siloxanes were investigated in South Korean river water and sediment, with a special focus on crucian carp tissues, to evaluate the residual status and potential bioaccumulation of siloxanes. The total siloxanes median concentrations observed in this study were 1495 ng/L in river water, 39.2 ng/g-dry weight [dw] in sediment, and 41.7 ng/g-wet weight [ww] in crucian carp muscle. Cyclic siloxanes (D3–D6) were predominant in all matrices, and D5 (mean: > 81%) was more abundant in biota tissues than in river water (30%) and sediment (26%) samples. Specifically, positive correlations between D5 concentrations and crucian carp sizes (p < 0.01, Spearman) as well as the relatively high estimated biota-sediment accumulation factor value of D5 (D5: 2.31), suggest the high bioaccumulative property of D5 in biota. However, no bioaccumulation potentials were observed for D3, D4, D6, and L3–L17 in this field-scale study. The distributions of major linear siloxanes (L7–L14) in crucian carp gills (17%) and gonads (21%) were higher than in other tissues (brain, 9.6%; liver, 2.6%; muscle, 1.5%). Moreover, relatively high tissue/plasma ratios were observed for linear siloxanes (L7–L10: 1.79–2.12) compared to cyclic siloxanes (D4–D6: 0.829–1.18) (p < 0.01, Mann Whitney U test), which indicated the higher transportability of linear siloxanes to fish tissues than cyclic siloxanes.
اظهر المزيد [+] اقل [-]Tracing riverine sulfate source in an agricultural watershed: Constraints from stable isotopes
2021
Liu, Jinke | Han, Guilin
The sulfate pollution in water environment gains more and more concerns in recent years. The discharge of domestic, municipal, and industrial wastewaters increases the riverine sulfate concentrations, which may cause local health and ecological problems. To better understand the sources of sulfate, this study collected water samples in a typical agricultural watershed in East Thailand. The source apportionment of sulfide was conducted by using stable isotopes and receptor models. The δ³⁴SSO₄ value of river water varied from 1.2‰ to 16.4‰, with a median value of 8.9‰. The hydrochemical data indicated that the chemical compositions of Mun river water were affected by the anthropogenic inputs and natural processes such as halite dissolution, carbonate, and silicate weathering. The positive matrix factorization (PMF) model was not suitable to trace source of riverine sulfate, because the meaning of the extracted factors seems to be vague. Based on the elemental ratio and isotopic composition, the inverse model yielded the relative contribution of sulfide oxidation (approximately 46.5%), anthropogenic input (approximately 41.5%), and gypsum dissolution (approximately 12%) to sulfate in Mun river water. This study indicates that the selection of models for source apportionment should be careful. The large contribution of anthropogenic inputs calls an urgent concern of the Thai government to establish effective management strategies in the Mun River basin.
اظهر المزيد [+] اقل [-]