خيارات البحث
النتائج 1 - 10 من 114
Role of RNA m6A modification in titanium dioxide nanoparticle-induced acute pulmonary injury: An in vitro and in vivo study
2022
Ruan, Fengkai | Liu, Changqian | Wang, Yi | Cao, Xisen | Tang, Zhen | Xu, Jiaying | Zeng, Jie | Yin, Hanying | Zheng, Naying | Yang, Chunyan | Zuo, Zhenghong | He, Chengyong
RNA N⁶-methyladenosine (m⁶A) modification regulates the cell stress response and homeostasis, but whether titanium dioxide nanoparticle (nTiO₂)-induced acute pulmonary injury is associated with the m⁶A epitranscriptome and the underlying mechanisms remain unclear. Here, the potential association between m⁶A modification and the bioeffects of several engineered nanoparticles (nTiO₂, nAg, nZnO, nFe₂O₃, and nCuO) were verified thorough in vitro experiments. nFe₂O₃, nZnO, and nTiO₂ exposure significantly increased the global m⁶A level in A549 cells. Our study further revealed that nTiO₂ can induce m⁶A-mediated acute pulmonary injury. Mechanistically, nTiO₂ exposure promoted methyltransferase-like 3 (METTL3)-mediated m⁶A signal activation and thus mediated the inflammatory response and IL-8 release through the degeneration of anti-Mullerian hormone (AMH) and Mucin5B (MUC5B) mRNAs in a YTH m⁶A RNA-binding protein 2 (YTHDF2)-dependent manner. Moreover, nTiO₂ exposure stabilized METTL3 protein by the lipid reactive oxygen species (ROS)-activated ERK1/2 pathway. The scavenging of ROS with ferrostatin-1 (Fer-1) alleviates the ERK1/2 activation, m⁶A upregulation, and the inflammatory response caused by nTiO₂ both in vitro and in vivo. In conclusion, our study demonstrates that m⁶A is a potential intervention target for alleviating the adverse effects of nTiO₂-induced acute pulmonary injury in vitro and in vivo, which has far-reaching implications for protecting human health and improving the sustainability of nanotechnology.
اظهر المزيد [+] اقل [-]Impact of brominated flame retardants on lipid metabolism: An in vitro approach
2022
Maia, Maria Luz | Sousa, Sara | Pestana, Diogo | Faria, Ana | Teixeira, Diana | Delerue-Matos, Cristina | Domingues, Valentina Fernandes | Calhau, Conceição
Brominated flame retardants (BFRs) are chemicals employed to lower the flammability of several objects. These endocrine disruptor chemicals are lipophilic and persistent in the environment. Due to these characteristics some have been restricted or banned by the European Union, and replaced by several new chemicals, the novel BFRs (NBFRs). BFRs are widely detected in human samples, such as adipose tissue and some were linked with altered thyroid hormone levels, liver toxicity, diabetes and metabolic syndrome in humans. However, the disturbance in lipid metabolism caused by BFRs with emphases to NBFRs remains poorly understood. In this study, we used a pre-adipocyte (3T3-L1) cell line and a hepatocyte (HepG2) cell line to investigate the possible lipid metabolism disruption caused by four BFRs: hexabromobenzene (HBB), pentabromotoluene (PBT), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB) and hexabromocyclododecane (HBCD). For that purpose, proliferation and Oil Red O assays, as well as, medium fatty acids profile evaluation using Gas chromatography and RNA extraction for quantitative RT-PCR assays were performed. We detected a significant reduction in the proliferation of preadipocytes and an increased lipid accumulation during differentiation caused by HBB. This BFR also lead to a significant increased expression of IL-1β and decreased expression of PGC-1α and adiponectin. Nevertheless, PBT, TBB and HBCD show to increase lipid accumulation in hepatocytes. PBT also display a significant increase of PPARγ gene expression. Lipid accumulation in the cells can occur by diverse mechanisms depending on the BFR. These results highlight the importance of endocrine disruptor compounds in obesity etiopathogeny.
اظهر المزيد [+] اقل [-]Effect of polystyrene nanoplastics on cell apoptosis, glucose metabolism, and antibacterial immunity of Eriocheir sinensis
2022
Nan, Xingyu | Jin, Xingkun | Song, Yu | Zhou, Kaimin | Qin, Yukai | Wang, Qun | Li, Weiwei
The adverse effects of plastic waste and nanoplastics on the water environment have become a focus of global attention in recent years. In the present study, using adult Chinese mitten crabs (Eriocheir sinensis) as an animal model, the bioaccumulation and the in vivo and in vitro toxicity of polystyrene nanoplastics (PS NPs), alone or in combination with the bacteria, were investigated. This study aimed to investigate the effects of PS NPs on apoptosis and glucose metabolism in Chinese mitten crabs, and whether PS NPs could synergistically affect the antibacterial immunity of crabs. We observed that NPs were endocytosed by hemocytes, which are immune cells in crustaceans and are involved in innate immunity. The RNA sequencing data showed that after hemocytes endocytosed NPs, apoptosis and glucose metabolism-related gene expression was significantly induced, resulting in abnormal cell apoptosis and a glucose metabolism disorder. In addition, exposure to NPs resulted in changes in the antimicrobial immunity of crabs, including changes in antimicrobial peptide expression, survival, and bacterial clearance. In summary, NPs could be endocytosed by crab hemocytes, which adversely affected the cell apoptosis, glucose metabolism, and antibacterial immunity of Eriocheir sinensis. This study revealed the effects of NPs on crab immunity and lays the foundation for further exploration of the synergistic effect of NPs and bacteria.
اظهر المزيد [+] اقل [-]Pre-pregnancy exposure to fine particulate matter (PM2.5) increases reactive oxygen species production in oocytes and decrease litter size and weight in mice
2021
Guo, Yi | Cao, Zhijuan | Jiao, Xianting | Bai, Dandan | Zhang, Yalin | Hua, Jing | Liu, Wenqiang | Teng, Xiaoming
Exposure of females to fine particulate matter ≤2.5 μm in diameter (PM2.5) prior to pregnancy could produce adverse impact on fertility and enhances susceptibility of the offspring to a variety of diseases. In the current study, female C57BL/6 mice (6 weeks of age) were exposed to either concentrated PM2.5 or filtered air (average PM2.5 concentration: 115.60 ± 7.77 vs. 14.07 ± 0.38 μg/m⁻³) using a whole-body exposure device for 12 weeks. Briefly, PM2.5 exposure decreased anti-Müllerian hormone level (613.40 ± 17.36 vs 759.30 ± 21.90 pg mL⁻¹, P<0.01) and increased reactive oxygen species (ROS) level (45.39 ± 0.82 vs 24.20 ± 0.85 arbitrary unit in fluorescence assay, P<0.01) in oocytes. The exposure increased oocyte degeneration rate (21.5% vs 5.1%, respectively (P<0.01) and decreased the 2-cell formation rate (71.9% vs 86.0%, P < 0.01). Transcriptome profiling using RNA sequencing showed wide spectrum of abnormal expression of genes, particularly those involved in regulating the mitochondrial respiratory complex in oocytes and metabolic processes in blastocysts. The exposure decreased litter size (6 ± 0.37 vs 7 ± 0.26, P<0.05) and weight (1.18 ± 0.02 vs 1.27 ± 0.02 g, P<0.01). In summary, PM2.5 exposure decreased female fertility, possibly through increased ROS production in oocytes and metabolic disturbances in developing embryos. The cause-effect relationship, however, requires further investigation.
اظهر المزيد [+] اقل [-]Prevalence of multi-resistant plasmids in hospital inhalable particulate matter (PM) and its impact on horizontal gene transfer
2021
Zhou, Zhen-Chao | Shuai, Xin-Yi | Lin, Ze-Jun | Liu, Yang | Zhu, Lin | Chen, Hong
Antibiotic resistance is exacerbated by the exchange of antibiotic resistance genes (ARGs) between microbes from diverse habitats. Plasmids are important ARGs mobile elements and are spread by horizontal gene transfer (HGT). In this study, we demonstrated the presence of multi-resistant plasmids from inhalable particulate matter (PM) and its effect on gene horizontal transfer. Three transferable multi-resistant plasmids were identified from PM in a hospital, using conjugative mating assays and nanopore sequencing. pTAir-3 contained 26 horizontal transfer elements and 10 ARGs. Importantly pTAir-5 harbored carbapenem resistance gene (blaOXA) which shows homology to plasmids from human and pig commensal bacteria, thus indicating that PM is a media for antibiotic resistant plasmid spread. In addition, 125 μg/mL PM₂.₅ and PM₁₀ significantly increased the conjugative transfer rate by 110% and 30%, respectively, and augmented reactive oxygen species (ROS) levels. Underlying mechanisms were revealed by identifying the upregulated expressional levels of genes related to ROS, SOS, cell membranes, pilus generation, and transposition via genome-wide RNA sequencing. The study highlights the airborne spread of multi-resistant plasmids and the impact of inhalable PM on the horizontal transfer of antibiotic resistance.
اظهر المزيد [+] اقل [-]Diet influences on growth and mercury concentrations of two salmonid species from lakes in the eastern Canadian Arctic
2021
Chételat, John | Shao, Yueting | Richardson, Murray C. | MacMillan, Gwyneth A. | Amyot, Marc | Drevnick, Paul E. | Gilla, Haradīpa | Köck, Günter | Muir, Derek C.G.
Diet, age, and growth rate influences on fish mercury concentrations were investigated for Arctic char (Salvelinus alpinus) and brook trout (Salvelinus fontinalis) in lakes of the eastern Canadian Arctic. We hypothesized that faster-growing fish have lower mercury concentrations because of growth dilution, a process whereby more efficient growth dilutes a fish’s mercury burden. Using datasets of 57 brook trout and 133 Arctic char, linear regression modelling showed fish age and diet indices were the dominant explanatory variables of muscle mercury concentrations for both species. Faster-growing fish (based on length-at-age) fed at a higher trophic position, and as a result, their mercury concentrations were not lower than slower-growing fish. Muscle RNA/DNA ratios were used as a physiological indicator of short-term growth rate (days to weeks). Slower growth of Arctic char, inferred from RNA/DNA ratios, was found in winter versus summer and in polar desert versus tundra lakes, but RNA/DNA ratio was (at best) a weak predictor of fish mercury concentration. Net effects of diet and age on mercury concentration were greater than any potential offset by biomass dilution in faster-growing fish. In these resource-poor Arctic lakes, faster growth was associated with feeding at a higher trophic position, likely due to greater caloric (and mercury) intake, rather than growth efficiency.
اظهر المزيد [+] اقل [-]Integrated transcriptomics and proteomics revealed the distinct toxicological effects of multi-metal contamination on oysters
2021
Li, Yunlong | Wang, Wen-Xiong
The Pearl River Estuary (PRE) is the largest estuary in southern China and under high metal stress. In the present study, we employed an integrated method of transcriptomics and proteomics to investigate the ecotoxicological effects of trace metals on the Hong Kong oyster Crassostrea hongkongensis. Three oyster populations with distinct spatial distributions of metals were sampled, including the Control (Station QA, the lowest metal levels), the High Cd (Station JZ, the highest Cd), and the High Zn–Cu–Cr–Ni (Station LFS, with the highest levels of zinc, copper, chromium, and nickel). Dominant metals in oysters were differentiated by principal component analysis (PCA), and theirgene and protein profiles were studied using RNA-seq and iTRAQ techniques. Of the 2250 proteins identified at both protein and RNA levels, 70 proteins exhibited differential expressions in response to metal stress in oysters from the two contaminated stations. There were 8 proteins altered at both stations, with the potential effects on mitochondria and endoplasmic reticulum by Ag. The genotoxicity, including impaired DNA replication and transcription, was specifically observed in the High Cd oysters with the dominating influence of Cd. The structural components (cytoskeleton and chromosome-associated proteins) were impaired by the over-accumulated Cu, Zn, Cr, and Ni at Station LFS. However, enhanced tRNA biogenesis and exosome activity might help the oysters to alleviate the toxicities resulting from their exposure to these metals. Our study provided comprehensive information on the molecular changes in oysters at both protein and RNA levels in responding to multi-levels of trace metal stress.
اظهر المزيد [+] اقل [-]The role of respiratory droplet physicochemistry in limiting and promoting the airborne transmission of human coronaviruses: A critical review
2021
Niazi, Sadegh | Groth, Robert | Spann, Kirsten | Johnson, Graham R.
Whether virulent human pathogenic coronaviruses (SARS-CoV, MERS-CoV, SARS-CoV-2) are effectively transmitted by aerosols remains contentious. Transmission modes of the novel coronavirus have become a hot topic of research with the importance of airborne transmission controversial due to the many factors that can influence virus transmission. Airborne transmission is an accepted potential route for the spread of some viral infections (measles, chickenpox); however, aerosol features and infectious inoculum vary from one respiratory virus to another. Infectious virus-laden aerosols can be produced by natural human respiratory activities, and their features are vital determinants for virus carriage and transmission. Physicochemical characteristics of infectious respiratory aerosols can influence the efficiency of virus transmission by droplets. This critical review identifies studies reporting instances of infected patients producing airborne human pathogenic coronaviruses, and evidence for the role of physical/chemical characteristics of human-generated droplets in altering embedded viruses’ viability. We also review studies evaluating these viruses in the air, field studies and available evidence about seasonality patterns. Ultimately the literature suggests that a proportion of virulent human coronaviruses can plausibly be transmitted via the air, even though this might vary in different conditions. Evidence exists for respirable-sized airborne droplet nuclei containing viral RNA, although this does not necessarily imply that the virus is transmittable, capable of replicating in a recipient host, or that inoculum is sufficient to initiate infection. However, evidence suggests that coronaviruses can survive in simulated droplet nuclei for a significant time (>24 h). Nevertheless, laboratory nebulized virus-laden aerosols might not accurately model the complexity of human carrier aerosols in studying airborne viral transport. In summary, there is disagreement on whether wild coronaviruses can be transmitted via an airborne path and display seasonal patterns. Further studies are therefore required to provide supporting evidence for the role of airborne transmission and assumed mechanisms underlying seasonality.
اظهر المزيد [+] اقل [-]Increased m6A modification of RNA methylation related to the inhibition of demethylase FTO contributes to MEHP-induced Leydig cell injury☆
2021
Zhao, Tianxin | Wang, Junke | Wu, Yuhao | Han, Lindong | Chen, Jiadong | Wei, Yuexin | Shen, Lianju | Long, Chunlan | Wu, Shengde | Wei, Guanghui
N⁶-methyladenosine (m6A) modification, the most prevalent form of RNA methylation, modulates gene expression post-transcriptionally. Di-(2-ethylhexyl) phthalate (DEHP) is a common environmental endocrine disrupting chemical that induces testicular injury due to the inhibition of the demethylase fat mass and obesity-associated protein (FTO) and increases the m6A modification. How FTO-mediated m6A modification in testicular Leydig cell injury induced by DEHP remains unclear. Here, the TM3 Leydig cell line was treated with mono-(2-ethylhexyl) phthalate (MEHP), the main metabolite of DEHP in the body, as well as FB23-2, an inhibitor of FTO. Decreased levels of testosterone in the culture supernatant, significantly increased apoptosis, and a remarkable upregulation of global m6A modification were found in both TM3 cells treated with MEHP and FB23-2. Transcriptome sequencing showed that both treatments significantly induced apoptosis-associated gene expression. Methylated RNA immunoprecipitation sequencing showed that the Leydig cell injury induced by upregulated m6A modification could be associated with multiple physiological disorders, including histone acetylation, reactive oxygen species biosynthesis, MAPK signaling pathway, hormone secretion regulation, autophagy regulation, and male gonadal development. Overall, the inhibition of FTO-mediated up-regulation of m6A could be involved in MEHP-induced Leydig cell apoptosis.
اظهر المزيد [+] اقل [-]Effects of different mobile phone UMTS signals on DNA, apoptosis and oxidative stress in human lymphocytes
2020
Gulati, Sachin | Kosik, Pavol | Durdik, Matus | Skorvaga, Milan | Jakl, Lukas | Markova, Eva | Belyaev, Igor
Different scientific reports suggested link between exposure to radiofrequency radiation (RF) from mobile communications and induction of reactive oxygen species (ROS) and DNA damage while other studies have not found such a link. However, the available studies are not directly comparable because they were performed at different parameters of exposure, including carrier frequency of RF signal, which was shown to be a critical for appearance of the RF effects. For the first time, we comparatively analyzed genotoxic effects of UMTS signals at different frequency channels used by 3G mobile phones (1923, 1947.47, and 1977 MHz). Genotoxicity was examined in human lymphocytes exposed to RF for 1 h and 3 h using complimentary endpoints such as induction of ROS by imaging flow cytometry, DNA damage by alkaline comet assay, mutations in TP53 gene by RSM assay, preleukemic fusion genes (PFG) by RT-qPCR, and apoptosis by flow cytometry. No effects of RF exposure on ROS, apoptosis, PFG, and mutations in TP53 gene were revealed regardless the UMTS frequency while inhibition of a bulk RNA expression was found. On the other hand, we found relatively small but statistically significant induction of DNA damage in dependence on UMTS frequency channel with maximal effect at 1977.0 MHz. Our data support a notion that each specific signal used in mobile communication should be tested in specially designed experiments to rule out that prolonged exposure to RF from mobile communication would induce genotoxic effects and affect the health of human population.
اظهر المزيد [+] اقل [-]