خيارات البحث
النتائج 1 - 10 من 13
Urbanization and cattle density are determinants in the exposure to anticoagulant rodenticides of non-target wildlife
2019
López-Perea, Jhon J. | Camarero, Pablo R. | Sánchez-Barbudo, Ines S. | Mateo, Rafael
The persistence and toxicity of second generation anticoagulant rodenticides (SGARs) in animal tissues make these compounds dangerous by biomagnification in predatory species. Here we studied the levels of SGARs in non-target species of wildlife and the environmental factors that influence such exposure. Liver samples of terrestrial vertebrates (n = 244) found dead between 2007 and 2016 in the region of Aragón (NE Spain) were analysed. The presence of SGARs was statistically analysed with binary or ordinal logistic models to study the effect of habitat characteristics including human population density, percentage of urban surface, livestock densities and surface of different types of crops. SGARs residues were detected in 83 (34%) of the animals and levels >200 ng/g were found in common raven (67%), red fox (50%), red kite (38%), Eurasian eagle-owl (25%), stone marten (23%), Eurasian buzzard (17%), northern marsh harrier (17%), and Eurasian badger (14%). The spatial analysis revealed that the presence of SGARs residues in wildlife was more associated with the use of these products as biocides in urban areas and cattle farms rather than as plant protection products in agricultural fields. This information permits to identify potential habitats where SGARs may pose a risk for predatory birds and mammals.
اظهر المزيد [+] اقل [-]Warfarin, a potential pollutant in aquatic environment acting through Pxr signaling pathway and γ-glutamyl carboxylation of vitamin K-dependent proteins
2014
Fernández, Ignacio | Santos, Adriana | Cancela, M Leonor | Laizé, Vincent | Gavaia, Paulo J.
Warfarin-induced vitamin K (VK) recycling impairment is used worldwide as a rodenticide and human thromboembolic prophylactic. Since VK metabolism/signaling pathways have been conserved throughout vertebrate evolution, its release to the environment might impact on aquatic organisms. Present study assessed the toxic effect of warfarin (0, 5, 25 and 125 mg L−1) on zebrafish development and characterized underlying mechanisms of action through qPCR analysis of VK-related genes. Expression of pregnane X receptor (pxr), the nuclear receptor binding vitamin K, was ubiquitous in zebrafish and suggests that warfarin exposure may interfere with several biological processes. Indeed, warfarin exposure of zebrafish larvae caused hemorrhages in brain, skeletal deformities and triggered ectopic calcifications, which may be the consequence of an altered γ-carboxylation of VK-dependent proteins and/or pxr signaling. This study provides new insights into warfarin effects as a bone homeostasis disruptor and soft tissue calcification inductor, and its potential risk for aquatic environments.
اظهر المزيد [+] اقل [-]Accumulation of anticoagulant rodenticides in a non-target insectivore, the European hedgehog (Erinaceus europaeus)
2010
Dowding, Claire V. | Shore, Richard F. | Worgan, Andrew | Baker, Philip J. | Harris, Stephen
Studies on exposure of non-targets to anticoagulant rodenticides have largely focussed on predatory birds and mammals; insectivores have rarely been studied. We investigated the exposure of 120 European hedgehogs (Erinaceus europaeus) from throughout Britain to first- and second-generation anticoagulant rodenticides (FGARs and SGARs) using high performance liquid chromatography coupled with fluorescence detection (HPLC) and liquid-chromatography mass spectrometry (LCMS). The proportion of hedgehogs with liver SGAR concentrations detected by HPLC was 3–13% per compound, 23% overall. LCMS identified much higher prevalence for difenacoum and bromadiolone, mainly because of greater ability to detect low-level contamination. The overall proportion of hedgehogs with LCMS-detected residues was 57.5% (SGARs alone) and 66.7% (FGARs and SGARs combined); 27 (22.5%) hedgehogs contained >1 rodenticide. Exposure of insectivores and predators to anticoagulant rodenticides appears to be similar. The greater sensitivity of LCMS suggests that hitherto exposure of non-targets is likely to have been under-estimated using HPLC techniques. Exposure of insectivorous hedgehogs to anticoagulant rodenticides in Britain is similar to predatory birds and mammals that specialise in eating small mammals, and hitherto exposure levels have been under-estimated using HPLC techniques.
اظهر المزيد [+] اقل [-]Does small mammal prey guild affect the exposure of predators to anticoagulant rodenticides?
2011
Tosh, D.G. | McDonald, R.A. | Bearhop, S. | Lllewellyn, N.R. | Fee, S. | Sharp, E.A. | Barnett, E.A. | Shore, R.F.
Ireland has a restricted small mammal prey guild but still includes species most likely to consume anticoagulant rodenticide (AR) baits. This may enhance secondary exposure of predators to ARs. We compared liver AR residues in foxes (Vulpes vulpes) in Northern Ireland (NI) with those in foxes from Great Britain which has a more diverse prey guild but similar agricultural use of ARs. Liver ARs were detected in 84% of NI foxes, more than in a comparable sample of foxes from Scotland and similar to that of suspected AR poisoned animals from England and Wales. High exposure in NI foxes is probably due to greater predation of commensal rodents and non-target species most likely to take AR baits, and may also partly reflect greater exposure to highly persistent brodifacoum and flocoumafen. High exposure is likely to enhance risk and Ireland may be a sentinel for potential effects on predator populations.
اظهر المزيد [+] اقل [-]Long-term increase in secondary exposure to anticoagulant rodenticides in European polecats Mustela putorius in Great Britain
2018
Sainsbury, Katherine A. | Shore, Richard F. | Schofield, Henry | Croose, E. (Elizabeth) | Pereira, M Gloria | Sleep, Darren | Kitchener, Andrew C. | Hantke, Georg | McDonald, Robbie A.
As a result of legal protection and population recovery, European polecats (Mustela putorius) in Great Britain are expanding into areas associated with greater usage of second-generation anticoagulant rodenticides (SGARs). We analysed polecat livers collected from road casualties from 2013 to 2016 for residues of five SGARs. We related variation in residues to polecat traits and potential exposure pathways, by analysing stable isotopes of carbon (δ13C) and nitrogen (δ15N) in their whiskers. 54 of 68 (79%) polecats had detectable residues of at least one SGAR. Bromadiolone (71%) was the most frequently detected compound, followed by difenacoum (53%) and brodifacoum (35%). Applying historical limits of detection to allow comparison between these new data and previous assessments, we show that in the 25 years from 1992 to 2016 inclusive, the rate of detection of SGARs in polecats in Britain has increased by a factor of 1.7. The probability of SGAR detection was positively related to increasing values of δ15N, suggesting that polecats feeding at a higher trophic level were more likely to be exposed. Total concentrations of SGARs in polecats with detectable residues were higher in polecats collected in arable compared to pastoral habitats, and in the west compared to the east of Britain. The number of compounds detected and total concentrations of SGARs increased with polecat age. There was no evidence of regional or seasonal variation in the probability of detecting SGARs, suggesting that the current risk of exposure to SGARs does not vary seasonally and has increased (from that in the 1990s) throughout the polecat's range. We recommend quantification of current practices in rodenticide usage, particularly in the light of recent regulatory changes, to enable assessment and mitigation of the risks of secondary exposure to rodenticides in non-target wildlife.
اظهر المزيد [+] اقل [-]Contamination of the Upper Class: Occurrence and Effects of Chemical Pollutants in Terrestrial Top Predators
2017
Rodríguez-Jorquera, I. A. | Vitale, N. | Garner, L. | Perez-Venegas, D. J. | Galbán-Malagón, C. J. | Duque-Wilckens, N. | Toor, G. S.
PURPOSE OF REVIEW: Knowledge of the occurrence and effects of pollutants on terrestrial top predators will serve to better understand the issue and propose measurements to conserve biodiversity and ecosystems. We reviewed literature on the occurrence and effects of pollutants on terrestrial top predators, which was particularly scarce in comparison to the literature available on aquatic top predators. We have asked the following questions: Does chemical pollution affect terrestrial top predator population? What are the mechanisms (if known) behind chemical pollution effects on top predators? What types of chemical pollution most commonly affect top predator species? RECENT FINDINGS: Pollutants present in the terrestrial top predators are industrial derived (PCBs), pesticides (insecticides and rodenticides), and trace metals (lead and mercury). Recent investigations on the effect of second-generation rodenticides (SGRs) are an emerging topic since these are causing deleterious effects on terrestrial top predator populations. On the other hand, eggshell thinning effects due to the old and known compounds such as DDT are still being observed in avian top predators. Further, lead pollution from spent ammunition affects predators after the hunting season. This information demonstrates that the occurrence and effects of chemical pollutants on terrestrial top predators is a relevant issue for species and ecosystem conservation. Topics such as biomagnification of pollutants, the impact of SGRs on carnivore populations, and alternatives of lead ammunition for hunting are relevant topics that warrant further research.
اظهر المزيد [+] اقل [-]Anticoagulant rodenticides in stoats (Mustela erminea) and weasels (Mustela nivalis) in England
1998
McDonald, R.A. | Harris, S. | Turnbull, G. | Brown, P. | Fletcher, M. (School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG (United Kingdom))
An assessment of vegetation management practices and burrow fumigation with aluminum phosphide as tools for managing voles within perennial crop fields in California, USA
2019
Baldwin, Roger A. | Stetson, Denise I. | Lopez, Manuel G. | Engeman, Richard M.
Voles (Cricetidae) cause extensive damage to a variety of crops throughout much of the Northern Hemisphere. The removal of vegetation from crop fields at the end of the growing season, combined with a subsequent burrow fumigant application of aluminum phosphide, has the potential to substantially curtail vole activity but has not been thoroughly examined. We set up a study to test the impact of these management tools in perennial globe artichoke (Cynara cardunculus var. scolymus) fields in Monterey County, CA, during 2010 and 2011, to determine their potential utility as part of an integrated pest management (IPM) program for managing California voles (Microtus californicus). We used both chewing indices and mortality estimates derived via radiotelemetry to assess the efficacy of aboveground vegetation removal and aluminum phosphide applications on vole abundance. We determined the impact of plowing artichoke fields on vole activity as well. Both removal of vegetation and applications of aluminum phosphide substantially reduced vole presence within treated fields. Plowing also reduced vole abundance to the point of little residual activity following treatment. These management practices appear to be effective at eliminating voles from crop fields. Combining these tools with management practices designed to slow down reinvasion by neighboring vole populations (e.g., barriers, repellents, traps) has the potential to substantially reduce farmer reliance on rodenticides for vole management, although rodenticides will still be needed to curtail populations that reestablish within crop fields. Such an IPM approach should substantially benefit both farmers and agro-ecosystems.
اظهر المزيد [+] اقل [-]Effectiveness of rodenticides for managing invasive roof rats and native deer mice in orchards
2014
Baldwin, Roger A. | Quinn, Niamh | Davis, David H. | Engeman, Richard M.
Roof rats (Rattus rattus) and deer mice (Peromyscus maniculatus) are occasional pests of nut and tree fruit orchards throughout California and in many other parts of the USA and beyond. In general, the most practical and cost-effective control method for rodents in many agricultural environments is the use of rodenticides (toxic baits), but little or no information exists on the efficacy of current rodenticides in controlling roof rats and deer mice in orchards. Therefore, our goals were to develop an index of rodent activity to monitor efficacy of rodenticides and to subsequently test the efficacy of three California Department of Food and Agriculture rodenticide baits (0.005 % chlorophacinone treated oats, 0.005 % diphacinone treated oats, and 0.005 % diphacinone wax block) to determine their utility for controlling roof rats and deer mice in agricultural orchards. We determined that a general index using the number of roof rat photos taken at a minimum of a 5-min interval was strongly correlated to the minimum number known estimate of roof rats; this approach was used to monitor roof rat and deer mouse populations pre- and post-treatment. Of the baits tested, the 0.005 % diphacinone treated oats was most effective for both species; 0.005 % chlorophacinone grain was completely ineffective against roof rats. Our use of elevated bait stations proved effective at providing bait to target species and should substantially limit access to rodenticides by many non-target species.
اظهر المزيد [+] اقل [-]Longevity of rodenticide bait pellets in a tropical environment following a rat eradication program
2014
Berentsen, Are R. | Pitt, William C. | Eisemann, John D. | Engeman, Richard M.
Invasive rodents (primarily Rattus spp.) are responsible for loss of biodiversity in island ecosystems worldwide. Large-scale rodenticide applications are typically used to eradicate rats and restore ecological communities. In tropical ecosystems, environmental conditions rapidly degrade baits and competition for baits by non-target animals can result in eradication failure. Our objective was to evaluate persistence of rodenticide baits during a rat eradication program on Palmyra Atoll; a remote tropical atoll with intense competition for resources by land crabs. Following aerial application, bait condition was monitored in four terrestrial environments and in the canopy foliage of coconut palms. Ten circular PVC hoops were fixed in place in each of Palmyra’s four primary terrestrial habitats and five rodenticide pellets were placed in each hoop. Five coconut palms were selected in three distinct regions of the atoll. One rodenticide pellet was placed on each of five palm fronds in each coconut palm. Fresh baits were placed in all monitoring locations after each broadcast bait application. Bait condition and survival was monitored for 7 days after the first bait application and 6 days after second application. Bait survival curves differed between applications at most monitoring sites, suggesting a decrease in overall rat activity as a result of rodenticide treatment. One terrestrial site showed near 100 % bait survival after both applications, likely due to low localized rat and crab densities. Median days to pellet disappearance were one and two days for the first and second application, respectively. Differences in survival curves were not detected in canopy sites between bait applications. Median days to pellet disappearance in canopy sites were 2 and 4 days for the first and second application, respectively. Frequent rainfall likely contributed to rapid degradation of bait pellets in coconut palm fronds.
اظهر المزيد [+] اقل [-]