خيارات البحث
النتائج 1 - 10 من 31
Effects of artificial light at night on the foraging behavior of an endangered nocturnal mammal
2020
Shier, Debra M. | Bird, Alicia K. | Wang, Thea B.
Modification of nighttime light levels by artificial illumination (artificial light at night; ALAN) is a rapidly increasing form of human disturbance that affects natural environments worldwide. Light in natural environments influences a variety of physiological and ecological processes directly and indirectly and, as a result, the effects of light pollution on species, communities and ecosystems are emerging as significant. Small prey species may be particularly susceptible to ALAN as it makes them more conspicuous and thus more vulnerable to predation by visually oriented predators. Understanding the effects of disturbance like ALAN is especially important for threatened or endangered species as impacts have the potential to impede recovery, but due to low population numbers inherent to at-risk species, disturbance is rarely studied. The endangered Stephens’ kangaroo rat (SKR), Dipodomys stephensi, is a nocturnal rodent threatened by habitat destruction from urban expansion. The degree to which ALAN impacts their recovery is unknown. In this study, we examined the effects of ALAN on SKR foraging decisions across a gradient of light intensity for two types of ALAN, flood and bug lights (756 vs 300 lumen, respectfully) during full and new moon conditions. We found that ALAN decreased probability of resource patch depletion compared to controls. Moreover, lunar illumination, distance from the light source and light type interacted to alter SKR foraging. Under the new moon, SKR were consistently more likely to deplete patches under control conditions, but there was an increasing probability of patch depletion with distance from the source of artificial light. The full moon dampened SKR foraging activity and the effect of artificial lights. Our study underscores that ALAN reduces habitat suitability, and raises the possibility that ALAN may impede the recovery of at-risk nocturnal rodents.
اظهر المزيد [+] اقل [-]Assessment of the aryl hydrocarbon receptor-mediated activities of polycyclic aromatic hydrocarbons in a human cell-based reporter gene assay
2017
Vondráček, Jan | Pěnčíková, Kateřina | Neča, Jiří | Ciganek, Miroslav | Grycová, Aneta | Dvořák, Zdeněk | Machala, Miroslav
Activation of the aryl hydrocarbon receptor (AhR)-mediated activity is one of key events in toxicity of polycyclic aromatic hydrocarbons (PAHs). Although various classes of AhR ligands may differentially activate human and rodent AhR, there is presently a lack of data on the human AhR-inducing relative potencies (REPs) of PAHs. Here, we focused on estimation of the AhR-mediated activities of a large set of environmental PAHs in human gene reporter AZ-AhR cell line, with an aim to develop the human AhR-based REP values with potential implications for risk assessment of PAHs. The previously identified weakly active PAHs mostly failed to activate the AhR in human cells. The order for REPs of individual PAHs in human cells largely corresponded with the available data from rodent-based experimental systems; nevertheless, we identified differences up to one order of magnitude in REP values of PAHs between human and rodent cells. Higher REP values were found in human cells for some important environmental contaminants or suspected carcinogens, such as indeno[1,2,3-cd]pyrene, benz[a]anthracene or benzo[b]fluoranthene, while lower REP values were determined for methyl-substituted PAHs. Our results also indicate that a different rate of metabolism for individual PAHs in human vs. rodent cells may affect estimation of REP values in human cell-based assay, and potentially alter toxicity of some compounds, such as benzofluoranthenes, in humans. We applied the AZ-AhR assay to evaluation of the AhR-mediated activity of complex mixtures of organic compounds associated with diesel exhaust particles, and we identified the polar compounds present in these mixtures as being particularly highly active in human cells, as compared with rodent cells. The present data suggest that differences may exist between the AhR-mediated potencies of PAHs in human and rodent cells, and that the AhR-mediated effects of polar PAH derivatives and metabolites in human cell models deserve further attention.
اظهر المزيد [+] اقل [-]Effects of short-term exposure to particulate matters on heart rate variability: A systematic review and meta-analysis based on controlled animal studies
2020
Huang, Fangfang | Wang, Ping | Pan, Xinjuan | Wang, Yingfang | Ren, Shuai
Exposure to particulate matters (PM) is recognized as an important risk factor for cardiovascular disease. A change in cardiac autonomic function is one postulated mechanism leading to PM related cardiovascular events. This study therefore evaluated the associations of short-term exposure to PM and heart rate variability (HRV) parameters, which can reflect the cardiac autonomic function.Four electronic databases were searched for controlled studies of rodents published prior to December 2018. A systematic review and meta-analysis was conducted. Effect sizes were calculated for five main HRV parameters, including standard deviation of normal-to-normal intervals (SDNN), square root of mean squared differences between successive normal-to-normal intervals (rMSSD), low frequency (LF), high frequency (HF), and the ratio of LF and HF (LF/HF).The review included 23 studies with 401 animals. Short-term exposure to PM by instillation yielded statistically significant effects on SDNN (Standardized Mean Difference [SMD] = −1.11, 95% Confidence Intervals [CI] = −2.22 to −0.01, P = 0.05), LF (SMD = −1.19, 95% CI = −1.99 to −0.40, P = 0.003) and LF/HF (SMD = −1.05, 95% CI = −2.03 to −0.07, P = 0.04). Short-term exposure to PM by inhalation only yielded statistically significant effect on LF/HF (SMD = −0.83, 95% CI = −1.39 to −0.27, P = 0.004). There was no evidence that animal model and exposure frequency influenced the relationship of PM and HRV.Short-term exposure to PM can decrease HRV of rodents, affecting cardiac autonomic function. Exposure methods can influence the relationships of PM and HRV parameters. Further studies should focus on the effects of long-term PM exposure, on human beings, and potential influential factors of PM-HRV associations.
اظهر المزيد [+] اقل [-]Betel quid containing safrole enhances metabolic activation of tobacco specific 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)
2019
Tsou, Han-Hsing | Ko, Hsiao-Tung | Chen, Chia-Tzu | Wang, Tse-Wen | Lee, Chien-Hung | Liu, Tsung-Yun | Wang, Hsiang-Tsui
Cigarette smoking (CS) and betel quid (BQ) chewing are two known risk factors that have synergistic potential for the enhancing the development of oral squamous cell carcinoma (OSCC) in Taiwan. Most mutagens and carcinogens are metabolically activated by cytochrome P450 (CYP450) to exert their mutagenicity or carcinogenicity. Previous studies have shown that metabolic activation of the tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), by CYP2A6 activity determines NNK-induced carcinogenesis. In addition, safrole affects cytochrome P450 activity in rodents. However, the effect of BQ safrole on the metabolism of tobacco-specific NNK and its carcinogenicity remains elusive. This study demonstrates that safrole (1 mg/kg/d) induced CYP2A6 activity, reduced urinary 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) levels, and increased NNK-induced DNA damage, including N7-methylguanine, 8-OH-deoxyguanosine and DNA strand breaks in a Syrian golden hamster model. Furthermore, altered NNK metabolism and increased NNK-induced DNA damage were also observed in healthy subjects with CS and BQ chewing histories compared to healthy subjects with CS histories. In conclusion, BQ containing safrole induced tobacco-specific NNK metabolic activation, resulting in higher NNK-induced genotoxicity. This study provides valuable insight into the synergistic mechanisms of CS- and BQ-induced OSCC.
اظهر المزيد [+] اقل [-]Does small mammal prey guild affect the exposure of predators to anticoagulant rodenticides?
2011
Tosh, D.G. | McDonald, R.A. | Bearhop, S. | Lllewellyn, N.R. | Fee, S. | Sharp, E.A. | Barnett, E.A. | Shore, R.F.
Ireland has a restricted small mammal prey guild but still includes species most likely to consume anticoagulant rodenticide (AR) baits. This may enhance secondary exposure of predators to ARs. We compared liver AR residues in foxes (Vulpes vulpes) in Northern Ireland (NI) with those in foxes from Great Britain which has a more diverse prey guild but similar agricultural use of ARs. Liver ARs were detected in 84% of NI foxes, more than in a comparable sample of foxes from Scotland and similar to that of suspected AR poisoned animals from England and Wales. High exposure in NI foxes is probably due to greater predation of commensal rodents and non-target species most likely to take AR baits, and may also partly reflect greater exposure to highly persistent brodifacoum and flocoumafen. High exposure is likely to enhance risk and Ireland may be a sentinel for potential effects on predator populations.
اظهر المزيد [+] اقل [-]Association between urinary thiodiglycolic acid level and hepatic function or fibrosis index in school-aged children living near a petrochemical complex
2019
Wang, Zhiwen | Liao, Kai-Wei | Chan, Chang-Chuan | Yu, Ming-Lung | Chuang, Hung-Yi | Chiang, Hung-Che | Huang, Po-Chin
The effect of exposure to vinyl chloride monomer (VCM) on susceptibility to hepatotoxicity in children is unknown, although experimental studies have demonstrated a significantly increased risk of hepatocellular carcinoma in rodents exposed to VCM in early life. Epidemiological studies have revealed a high prevalence of liver fibrosis and abnormal liver function in workers exposed to high VCM levels. We aimed to assess the association among urinary thiodiglycolic acid (TDGA) level, abnormal liver function, and hepatic fibrosis in school-aged children living near a petrochemical complex. A total of 303 school-aged (6–13 years) children within 10 km nearly a petrochemical complex was recruited in central Taiwan. First-morning urine and blood samples were collected from each subject, and urinary TDGA level was analyzed through liquid chromatography–tandem mass spectrometry. Liver function was determined by serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. Hepatic fibrosis was assessed using the AST to platelet ratio index (APRI) and fibrosis-4 score (FIB-4). Risk of hepatotoxicity induced by TDGA exposure was estimated using multivariate logistic regression. The median (range, subclinically abnormal %) AST and ALT levels of all subjects were 26.0 (17.0–99.0, 25.7%) and 15.0 (7.0–211.0, 5.9%) IU/L, respectively. Children in the highest urinary TDGA quartile (≥160.0 μg/g creatinine) exhibited significantly elevated median AST levels compared with those in the lowest quartiles (<35.4 μg/g creatinine, p = 0.033). After adjustment for potential confounding factors, children in the highest quartiles (Q₄) of TDGA level had significantly increased odds ratio (OR) of subclinically abnormal AST (OR = 3.86; 95% confidence interval: 1.54–9.67) compared with those in the lowest quartile. A dose-response trend (p = 0.004) was observed. Our findings support the hypothesis that elevated urinary TDGA level in children living near petrochemical complex is associated with susceptibility to hepatotoxicity.
اظهر المزيد [+] اقل [-]Distribution of trace element pollutants in a contaminated grassland ecosystem established on metalliferous fluorspar tailings. 1: lead
1989
Andrews, S.M. | Johnson, M.S. | Cooke, J.A. (Dep. Biol., Sunderland Polytechnic, Sunderland (UK))
Morphological, biochemical, and histopathological indices and contaminant burdens of cotton rats (Sigmodon hispidus) at three hazardous waste sites near Houston, Texas, USA
1993
Rattner, B.A. | Flickinger, E.L. | Hoffman, D.J. (US Fish and Wildlife Service, Patuxent Wildlife Research Center, Laurel, MD 20708 (USA))
Anticoagulant rodenticide exposure in raptors from Ontario, Canada
2022
Thornton, Grace L. | Stevens, B. (Brian) | French, Shannon K. | Shirose, Leonard J. | Reggeti, Felipe | Schrier, Nick | Parmley, E Jane | Reid, Alexandra | Jardine, Claire M.
Anticoagulant rodenticides (ARs) are used globally to control rodent pest infestations in both urban and agricultural settings. It is well documented that non-target wildlife, including predatory birds, are at risk for secondary anticoagulant exposure and toxicosis through the prey they consume. However, there have been no large-scale studies of AR exposure in raptors in Ontario, Canada since new Health Canada legislation was implemented in 2013 in an attempt to limit exposure in non-target wildlife. Our objective was to measure levels of ARs in wild raptors in southern Ontario to assess their exposure. We collected liver samples from 133 raptors representing 17 species submitted to the Canadian Wildlife Health Cooperative (CWHC) in Ontario, Canada, between 2017 and 2019. Liquid chromatography-tandem mass spectrometry (LC–MS/MS) was used to quantitatively assess the level of exposure to 14 first- and second-generation ARs. Detectable levels of one or more ARs were found in 82 of 133 (62%) tested raptors, representing 12 species. The most commonly detected ARs were bromadiolone (54/133), difethialone (40/133), and brodifacoum (33/133). Of AR-positive birds, 34/82 (42%) contained residues of multiple (> 1) anticoagulant compounds. Our results indicate that AR exposure is common in raptors living in southern Ontario, Canada. Our finding that brodifacoum, difethialone, and bromadiolone were observed alone or in combination with one another in the majority of our sampled raptors indicates that legislative changes in Canada may not be protecting non-target wildlife as intended.
اظهر المزيد [+] اقل [-]Concentrations of cadmium and lead, but not zinc, are higher in red fox tissues than in rodents—pollution gradient study in the Małopolska province (Poland)
2019
Ziętara, Joanna | Wierzbowska, Izabela A. | Gdula-Argasińska, Joanna | Gajda, Agnieszka | Laskowski, Ryszard
The main purpose of our research was to assess the chronic exposure of red foxes to Cd, Pb and Zn. We have determined concentrations of these metals in the kidney, liver and muscle of 36 red foxes hunted between December 2002 and March 2003 in differently polluted areas in southern Poland. Tissue concentrations of Pb and Cd in the red foxes significantly co-varied with concentrations of these elements in the soil, and differed between the tissues. We compared concentrations of Pb, Cd, and Zn in red foxes with two rodent species, Apodemus flavicollis and Myodes glareolus, trapped simultaneously in the same area. Concentrations of Pb and Cd appeared significantly higher in the red foxes than in the rodents, but the slopes of the relationship between metal concentrations in tissues and in soil were similar in all species. This indicates that extrapolation from results of monitoring studies conducted on rodents to mammalian carnivores is possible but requires applying an extrapolation factor.
اظهر المزيد [+] اقل [-]