خيارات البحث
النتائج 1 - 10 من 228
Wild fish and seafood species in the western Mediterranean Sea with low safe mercury concentrations
2022
Capodiferro, Marco | Marco, Esther | Grimalt, Joan O.
A total of 1345 specimens belonging to 58 different species of wild fish and seafood from the western Mediterranean Sea were analyzed to assess total mercury levels and to estimate which species meet the EU recommendations for human consumption (0.5 μg g⁻¹ ww) in all cases. All fish species were caught off the Mediterranean coasts and intended for human consumption. All specimens were collected from local markets located in Spain, Italy and France that sell fish caught by local fishermen (Eivissa, Menorca, Mallorca, Alacant, L'Ampolla, Ametlla de Mar, Marseille, Genoa, Civitavecchia, Alghero) at different time periods. Mercury concentrations were measured by thermal decomposition-gold amalgamator-atomic absorption spectrometry. Only thirteen species were found that did not exceed 0.5 μg g⁻¹ ww in any specimen analyzed. These safe species were sardines (Sardina pilchardus), anchovies (Engraulis encrasicolus), blue whiting (Micromesistius poutassou), picarel (Spicara smaris), blackspot seabream (Pagellus bogaraveo), gilthead seabream (Sparus aurata), pearly razorfish (Xyrichtys novacula), surmullet (Mullus surmuletus), painted comber (Serranus scriba), brown meagre (Sciaena umbra), salema (Sarpa salpa), common dolphinfish (Coryphaena hippurus) and squid (Loligo vulgaris). These species occupy different trophic levels, have different lengths and average weights, but show a low mercury concentration than others living in the same environments. Potential human consumption of these species as sole source of fish would imply estimated weekly intakes representing between 49% and 70% of the recommended provisional tolerable weekly intake of methylmercury in the worst case. Health authorities should pay specific attention to species that do not meet EU thresholds and make appropriate precautionary health recommendations, especially for pregnant women and children.
اظهر المزيد [+] اقل [-]Accumulation characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans and polychlorinated biphenyls in human breast milk from a seaside city of North China
2022
Sun, Shuai | Zhang, Baoqin | Luo, Yun | Ma, Xindong | Cao, Rong | Zhang, Yichi | Gao, Yuan | Chen, Jiping | Zhang, Haijun
Breast milk samples were collected from 51 mothers in a seaside city Dalian, where the residents usually have higher dietary exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) due to the larger consumption of seafood. The lipid-basis concentrations of ∑Cl₂–₈DD/Fs, ∑Cl₂–₁₀Bs, and total toxicity equivalent (WHO-TEQ) were measured to be in the ranges of 35.7–2727.8 pg/g, 4.91–52.64 ng/g, and 2.27–36.30 pg/g, respectively. The average proportion of ∑Cl₂–₃DD/Fs was higher than that of ∑Cl₄–₇DD/Fs in the collected human breast milk samples, suggesting that the health risk of Cl₂–₃DD/Fs should be especially concerned. The concentration data of PCDD/Fs and PCBs in human breast milk essentially followed a positive skew probability distribution. Women in high-level exposure scenarios exhibited a higher potential to accumulate homologues Cl₄DFs, Cl₇DFs, Cl₈DF, and Cl₆Bs in breast milk. Three PCDD/F congeners (1,2,3,6,7,8-Cl₆DF, 1,2,3,4,7,8-Cl₆DF, and 1,2,3,4,6,7,8-Cl₇DD) and three PCB congeners (PCB 126, PCB 138, and PCB 169) were identified as good indicators for the accumulation of PCDD/Fs and PCBs in human breast milk, respectively. The food-to-milk accumulation factors (FMAF) were calculated to evaluate the accumulation potentials of different PCDD/F and PCB congeners in human breast milk via dietary exposure. The calculated FMAF value presented a non-monotonic variation with the logarithm of n-octanol–water partition coefficient (log KOW) with a peak at a log KOW value of about 7.3 and a valley at a log KOW value of about 8. The mean value of the estimated daily intake (EDI) of total WHO-TEQ for breast-fed infants in Dalian, predicted by Monte Carlo simulation, was 10 folds higher than the upper range of the tolerable daily intake (TDI) value (4 pg WHO-TEQ/kg bw/d), suggesting continued and enhanced efforts should be made to reduce the exposure risk of infants to PCDD/Fs and PCBs.
اظهر المزيد [+] اقل [-]Analysis of microplastics of a broad size range in commercially important mussels by combining FTIR and Raman spectroscopy approaches
2021
Vinay Kumar, B.N. | Löschel, Lena A. | Imhof, Hannes K. | Löder, Martin G.J. | Laforsch, Christian
Microplastic (MP) contamination is present in the entire marine environment from the sediment to the water surface and down to the deep sea. This ubiquitous presence of MP particles opens the possibility for their ingestion by nearly all species in the marine ecosystem. Reports have shown that MP particles are present in local commercial seafood species leading to the possible human ingestion of these particles. However, due to a lack of harmonized methods to identify microplastics (MPs), results from different studies and locations can hardly be compared. Hence, this study was aimed to detect, quantify, and estimate MP contamination in commercially important mussels originating from 12 different countries distributed worldwide. All mussels were obtained from supermarkets and were intended for human consumption. Using a combinatorial approach of focal plane array (FPA)-based micro- Fourier-transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy allowed the detection and characterization of MP down to a size of 3 μm in the investigated mussels. Further, a gentle sample purification method based on enzymes has been modified in order to optimize the digestion of organic material in mussels. A random forest classification (RFC) approach, which allows a rapid discrimination between different polymer types and thus fast generation of data on MP abundance and size distributions with high accuracy, was implemented in the analytical pipeline for IR spectra. Additionally, for the first time we also applied a RFC approach for the automated characterization of Raman spectra of MPs.
اظهر المزيد [+] اقل [-]Distribution of total mercury and methylmercury and their controlling factors in the East China Sea
2020
Liu, Chang | Chen, Lufeng | Liang, Shengkang | Li, Yanbin
Mercury (Hg) is among contaminants of public concern due to its prevalent existence, high toxicity, and bioaccumulation through food chains. Elevated Hg has been detected in seafood from the East China Sea (ECS), which is one of the largest marginal seas and an important fishing region in the northwestern Pacific Ocean. However, there is still a lack of knowledge on the distribution of Hg species and their controlling factors in the ECS water column, thus preventing the understanding of Hg cycling and the assessment of Hg risks in the ECS. In this study, two cruises were conducted in October 2014 and June 2015 in order to investigate the distribution of total Hg (THg) and methylmercury (MeHg) and their controlling factors in the ECS. The concentrations of THg and MeHg were determined to be 4.2 ± 2.8 ng/L (THg) and 0.25 ± 0.13 ng/L (MeHg) in water from the ECS. The level of Hg in the ECS occupied the higher rank among the marginal seas, thus indicating significant Hg contamination in this system. Both the THg and MeHg presented complicated spatial distribution patterns in the ECS, with high concentration areas located in both the nearshore and offshore areas. Statistical analyses suggest that temperature (T) and Hg in sediment may be the controlling factors for THg distribution, while dissolved organic matter (DOM), T, and MeHg in the sediment may be the controlling factors for MeHg distribution in the seawater of the ECS. The relative importance of these environmental factors in Hg distribution depends on the water depth. T-salinity (S) diagram analyses showed that water mass mixing may also play an important role in controlling THg and MeHg distribution in the coastal ECS.
اظهر المزيد [+] اقل [-]Thermal discharge influences the bioaccumulation and bioavailability of metals in oysters: Implications of ocean warming
2020
Lan, Wang-Rong | Huang, Xu-Guang | Lin, Lu-xiu | Li, Shun-Xing | Liu, Feng-Jiao
Human-induced temperature changes influence coastal regions, both via thermal pollution and ocean warming, which exerts profound effects on the chemistry of metals and the physiology of organisms. However, it remains unknown whether the increased temperature of discharged water or ocean warming, as a result of climate change, lead to an increase of human health risks associated with the consumption of sea foods. In this study, the influence of temperature on metal accumulation by oysters was studied in individuals collected from a coastal area affected by the thermal water discharge of the Houshi Power Plant, China. The bioaccumulation factor (BAF) and oral bioavailability (OBA) of metals in oysters was determined. Elevated temperatures led to an increase in BAF for Cu, Zn, Hg, and Cd (p < 0.05), but no change was observed for As and Pb (p > 0.05). The OBA for Cd, As, and Pb correlated positively to elevated temperatures (p < 0.05). However, for Cu and Zn, OBA was negatively correlated with increasing temperature (p < 0.05). As, Pb, and Cd in the trophically available metal (defined as a sum of heat-stable proteins, heat-denaturable proteins, and organelles) was significantly elevated at the highest temperature seawater site (site A) compared to the lowest seawater site (site B). Thus, the irregular variation of OBA for each metal may be the result of variations in the subcellular distribution of metals and the protein quality influenced by the increased temperature. Moreover, the increased temperature and increased the hazard quotient values of As and Cd (p < 0.05 for As, n = 6, p < 0.05 for Cd, n = 6), which provided an indication of the potential risks of the consumption of oysters or other seafood to future warming under climate change scenarios.
اظهر المزيد [+] اقل [-]A preliminary analysis of microplastics in edible versus non-edible tissues from seafood samples
2020
Akoueson, Fleurine | Sheldon, Lisa M. | Danopoulos, Evangelos | Morris, Steve | Hotten, Jessica | Chapman, Emma | Li, Jiana | Rotchell, Jeanette M.
Plastics have been widely reported to be present in the environment yet there are still many questions regarding the extent of this and the impacts these may have on both the environment and human health. The purpose of this investigation is to determine levels of micro and mesoplastic (MP), in the 1–5000 μm range, in commercially important species of finfish and shellfish. Additionally, to determine and compare the relative MP levels in edible versus non-edible tissues, and consider the wider implications in terms of human health concerns with a preliminary risk identification approach. For several fish species, samples taken from typically non-edible (gills, digestive system) and edible (muscle) flesh, and were analysed separately. Scallops, where all tissues are edible, were analysed whole. Significant differences were observed in the number of particles isolated from the finfish gills and digestive tissues relative to the control samples, but not in the edible flesh. For scallops, the abundance of particles in the Scottish samples did not vary significantly from the control, while the Patagonian scallops displayed significantly higher numbers of MPs. Characterisation of MPs by FTIR microscopy found that 16–60% (depending on species) were polyethylene terephthalate (PET) and polyethylene (PE) in origin. The risk identification results validate MPs as an emerging risk in the food chain and establish seafood as a vector for the exposure and uptake of MPs through the ingestion route for humans. Levels of MPs in seafood, and a direct link to the human food chain, suggests that their quantification be included as one food safety measure.
اظهر المزيد [+] اقل [-]Microplastics in the edible and inedible tissues of pelagic fishes sold for human consumption in Kerala, India
2020
Daniel, Damaris Benny | Ashraf, P Muhamed | Thomas, Saly N.
Microplastics in commercially important seafood species is an emerging area of food safety concern. While there have been reports of plastic particles in the gastrointestinal tract of several species, presence of microplastics in edible fish tissues has not yet been reported from India. This study examined the presence of microplastics in the edible (muscle and skin) and inedible (gill and viscera) tissues of nine commercially important pelagic fish species from Kerala, India. A total of 163 particles consisting mainly of fragments (58%) were isolated. Out of 270 fishes analysed (n = 30 per species), 41.1% of the fishes had microplastics in their inedible tissues while only 7% of fishes had microplastics in their edible tissues. The quantity of microplastics in inedible tissue was significantly larger in filter feeders than, that in visual predators (p < 0.05). The average abundance of microplastics in edible tissues was 0.07 ± 0.26 items/fish (i.e., 0.005 ± 0.02 items/g) and was 0.53 ± 0.77 items/fish (i.e., 0.054 ± 0.098 items/g) in inedible tissues. The results suggest the possibility of human intake of microplastics by the consumption of pelagic fishes from this region, albeit in small quantities.
اظهر المزيد [+] اقل [-]Levels and profiles of long-chain perfluoroalkyl carboxylic acids in Pacific cod from 14 sites in the North Pacific Ocean
2019
Fujii, Yukiko | Tuda, Hayato | Kato, Yoshihisa | Kimura, Osamu | Endo, Tetsuya | Harada, Kouji H. | Koizumi, Akio | Haraguchi, Koichi
We investigated the profiles and levels of perfluoroalkyl carboxylic acid (PFCA) contamination in Pacific cod (Gadus macrocephalus) from the North Pacific Ocean. The mean concentrations of PFCAs containing 8 to 14 carbon atoms (C8–C14) in edible Pacific cod muscle ranged from 216 to 670 pg g⁻¹ wet weight in the Northeast Pacific Ocean (Seattle, Vancouver, Alaska, and Russia), from 819 to 1710 pg g⁻¹ wet weight in Japanese coastal waters (Hokkaido, Aomori, Iwate, Miyagi, Tottori, and Shimane), and from 288 to 892 pg g⁻¹ wet weight in Korean waters (Sokcho, Busan, and Yeosu). These results indicate there are geographical differences in the distribution of PFCAs. The long-chain PFCAs (C9–C14) contributed 96% of the total PFCA concentration across Japan, whereas they contributed only 33% of the total PFCA concentration in the USA and Canada. Long-chain PFCA concentrations in cod samples collected in Japanese and Korean waters were about three to four times those in samples from the USA, Canada, and Russia. Because seafood is considered an important dietary source of PFCAs, high concentrations of long-chain PFCAs in Pacific cod from Japanese and Korean waters may affect human dietary exposure and blood concentrations of long-chain PFCAs.
اظهر المزيد [+] اقل [-]Maternal transfer of phenol derivatives in the Baltic grey seal Halichoerus grypus grypus
2018
Nehring, Iga | Falkowska, Lucyna | Staniszewska, Marta | Pawliczka, Iwona | Bodziach, Karina
Studies of circulating levels in difference sex and age classes, and maternal transfer of bisphenol A, 4-tert-octylphenol and 4- nonylphenol in the Baltic grey seal were performed from 2014-2017. Blood was collected from long-term captive adult males, pregnant females and pups. Milk was collected from nursing females. The aim of this study was not only to determine the concentrations of phenol derivatives, i.e. bisphenol A (BPA), 4-tert-octylphenol (OP) and 4-nonylphenol (NP), but also to try to evaluate the transfer of these compounds to the next generation in the final stage of foetal life and in the first few weeks of life in juvenile marine mammals. The measurements were carried out using high performance liquid chromatography. The obtained data show that all phenol derivatives are present in the blood of males, females and pups (range <0.07–101 ng·cm⁻³) and in female milk (range <0.1–406.3 ng·cm⁻³). The main source of phenol derivatives in organisms is food exposure. Gender, age, or number of births were not observed to have a significant effect on changes in phenol derivative levels in seal blood within the breeding group. In the prenatal stage of life, a small amount of BPA and alkylphenols was passed on to the offspring through the placenta. In the blood of the offspring the concentration of these compounds exceeded the concentration in the mother's blood 1.5-fold. During nursing, females detoxified their systems. Level of phenol derivatives in the pups blood increased linearly with its increasing concentrations in the mother's milk. On the other hand, the seafood diet which started after the physiological fasting stage of the pup, stabilised the levels of phenol derivatives below 10 ng ∙ cm⁻³.
اظهر المزيد [+] اقل [-]Arsenic exposure, diabetes-related genes and diabetes prevalence in a general population from Spain
2018
Grau-Perez, Maria | Navas-Acien, Ana | Galan-Chilet, Inmaculada | Briongos-Figuero, Laisa S. | Morchon-Simon, David | Bermudez, Jose D. | Crainiceanu, Ciprian M. | de Marco, Griselda | Rentero-Garrido, Pilar | García Barrera, Tamara | Gómez Ariza, José L. | Casasnovas, Jose A. | Martin-Escudero, Juan C. | Redon, Josep | Chaves, F Javier | Tellez-Plaza, Maria
Inorganic arsenic exposure may be associated with diabetes, but the evidence at low-moderate levels is not sufficient. Polymorphisms in diabetes-related genes have been involved in diabetes risk. We evaluated the association of inorganic arsenic exposure on diabetes in the Hortega Study, a representative sample of a general population from Valladolid, Spain. Total urine arsenic was measured in 1451 adults. Urine arsenic speciation was available in 295 randomly selected participants. To account for the confounding introduced by non-toxic seafood arsenicals, we designed a multiple imputation model to predict the missing arsenobetaine levels. The prevalence of diabetes was 8.3%. The geometric mean of total arsenic was 66.0 μg/g. The adjusted odds ratios (95% confidence interval) for diabetes comparing the highest with the lowest tertile of total arsenic were 1.76 (1.01, 3.09) and 2.14 (1.47, 3.11) before and after arsenobetaine adjustment, respectively. Polymorphisms in several genes including IL8RA, TXN, NR3C2, COX5A and GCLC showed suggestive differential associations of urine total arsenic with diabetes. The findings support the role of arsenic on diabetes and the importance of controlling for seafood arsenicals in populations with high seafood intake. Suggestive arsenic-gene interactions require confirmation in larger studies.
اظهر المزيد [+] اقل [-]