خيارات البحث
النتائج 1 - 10 من 53
Levels of polychlorinated biphenyls, organochlorine pesticides, mercury, cadmium, copper, selenium, arsenic, and zinc in the harbour seal, Phoca vitulina, in Norwegian waters.
1990
Skaare J.U. | Markussen N.H. | Norheim G. | Haugen S. | Holt G.
Could biotransport be an important pathway in the transfer of phenol derivatives into the coastal zone and aquatic system of the Southern Baltic?
2020
Staniszewska, Marta | Nehring, Iga | Falkowska, Lucyna | Bodziach, Karina
Bird guano and the faeces of marine mammals appear to be a significant yet undisclosed biotransporter of Endocrine Disrupting Compounds in the marine environment. The authors determined the concentration of bisphenol A (BPA), 4-tert-octylphenol (4-t-OP) and 4-nonylphenol (4-NP) removed from birds and seals in their droppings into the coastal zone of the Gulf of Gdansk (Southern Baltic Sea).The research was carried out on samples of bird guano collected during the breeding season and after in 2016 at nesting sites, as well as on faecal samples from grey seals (Halichoerus grypus grypus) living in the Seal Centre of the Marine Station in Hel between 2014 and 2018. Measurements were carried out using high performance chromatography with fluorescence detector. Results have shown that the presence of seabird habitats and grey seal colonies in the coastal zone of the Gulf of Gdansk can have an impact on the pollution of the seashore (beach sand, bottom sediment and surface seawater) with phenol derivatives. The concentrations of BPA, 4-t-OP and 4-NP ranged from 0.1 to 32.97 ng∙g⁻¹dw in sediment and beach sand, and from 0.23 to over 800 ng dm⁻³ in seawater. In the cases of bisphenol A and 4-tert-octylphenol safe concentration levels in the waters were exceeded. Bisphenol A concentrations were almost always found to be the highest. This was also noted in bird guano and seal faeces, although it was found to be much higher in the seal faeces - average 10149.79 ng g⁻¹ dw, than in bird guano. An experiment conducted to assess BPA, 4-t-OP, 4-NP leaching from bird guano and seal faeces into seawater, also confirmed the importance of animal excrement in the circulation of these compounds in the marine ecosystem. The highest % of leaching related to BPA was noted at 20 °C and reached 84%. The lowest % of leaching was for 4-nonylphenol (44%).
اظهر المزيد [+] اقل [-]Transfer of mercury and phenol derivatives across the placenta of Baltic grey seals (Halichoerus grypus grypus)
2017
Nehring, Iga | Grajewska, Agnieszka | Falkowska, Lucyna | Staniszewska, Marta | Pawliczka, Iwona | Saniewska, Dominika
The placenta is an intermediary organ between the female and the developing foetus. Some chemical substances, including the most harmful ones, exhibit the ability to accumulate in or penetrate through the placenta. The aim of the study was to determine the role of the placenta of the Baltic grey seal (Halichoerus grypus grypus) in the transfer of endocrine disrupting compounds (EDCs) - (bisphenol A, 4-tert- octylphenol, 4- nonylphenol), as well as total and organic mercury. 30 placentas were collected from grey seals pupping under human care at the Hel Marine Station in the years 2007–2016. The assays were conducted using the technique of high-preformance liquid chromatography (phenol derivatives) and atomic absorption spectrometry (mercury and selenium). A measurable level of EDCs was indicated in the placentas of grey seals. It was established that the inorganic Hg form was accumulated in the placenta, and that its concentrations were an order of magnitude higher than the concentrations of the organic form, which penetrated to the foetus. Similar observations were made for phenol derivatives - bisphenol A, 4-tert- octylphenol and 4-nonylphenol. For this compound group the placenta was a barrier, but the properties of phenol derivatives suggest the possibility of their penetration through this organ.
اظهر المزيد [+] اقل [-]Polychlorinated naphthalenes (PCNs) in sub-Arctic and Arctic marine mammals, 1986–2009
2012
Rotander, Anna | van Bavel, Bert | Riget, Frank | Auðunsson, Guðjón Atli | Polder, Anuschka | Gabrielsen, Geir Wing | Víkingsson, Gísli | Mikkelsen, Bjarni | Dam, Maria
A selection of PCN congeners was analyzed in pooled blubber samples of pilot whale (Globicephala melas), ringed seal (Phoca hispida), minke whale (Balaenoptera acutorostrata), fin whale (Balaenoptera physalus), harbour porpoise (Phocoena phocoena), hooded seal (Cystophora cristata) and Atlantic white-sided dolphin (Lagenorhynchus acutus), covering a time period of more than 20 years (1986–2009). A large geographical area of the North Atlantic and Arctic areas was covered. PCN congeners 48, 52, 53, 66 and 69 were found in the blubber samples between 0.03 and 5.9 ng/g lw. Also PCBs were analyzed in minke whales and fin whales from Iceland and the total PCN content accounted for 0.2% or less of the total non-planar PCB content. No statistically significant trend in contaminant levels could be established for the studied areas. However, in all species except minke whales caught off Norway the lowest ∑PCN concentrations were found in samples from the latest sampling period.
اظهر المزيد [+] اقل [-]Perfluoroalkyl substances (PFASs) in white whales (Delphinapterus leucas) from Svalbard – A comparison of concentrations in plasma sampled 15 years apart
2020
Villanger, Gro D. | Kovacs, Kit M. | Lydersen, Christian | Haug, Line S. | Sabaredzovic, Azemira | Jenssen, Bjørn M. | Routti, Heli
The objective of the present study was to investigate recent concentrations of perfluoroalkyl substances (PFASs) in white whales (Delphinapterus leucas) from Svalbard and compare them to concentrations found in white whales sampled from that same area 15 years ago. Plasma collected from live-captured white whales from two time periods (2013–2014, n = 9, and 1996–2001, n = 11) were analysed for 19 different PFASs. The 11 PFASs detected included seven C₈–C₁₄ perfluoroalkyl carboxylates (PFCAs) and three C₆–C₈ perfluoroalkyl sulfonates (PFSAs) as well as perfluorooctane sulfonamide (FOSA). Recent plasma concentrations (2013–2014) of the dominant PFAS in white whales, perfluorooctane sulfonate (PFOS; geometric mean = 22.8 ng/mL), was close to an order of magnitude lower than reported in polar bears (Ursus maritimus) from Svalbard. PFOS concentrations in white whales were about half the concentrations in harbour (Phoca vitulina) and ringed (Pusa hispida) seals, similar to hooded seals (Cystophora cristata) and higher than in walruses (Odobenus rosmarus) from that same area. From 1996 to 2001 to 2013–2014, plasma concentrations of PFOS decreased by 44%, whereas four C₉₋₁₂ PFCAs and total PFCAs increased by 35–141%. These results follow a similar trend to what has been reported in other studies of Arctic marine mammals from Svalbard. The most dramatic change has been the decline of PFOS concentrations since 2000, corresponding to the production phase-out of PFOS and related compounds in many countries around the year 2000 and a global restriction on these substances in 2009. Still, the continued dominance of PFOS in white whales, and increasing concentration trends for several PFCAs, even though exposure is relatively low, calls for continued monitoring of concentrations of both PFCAs and PFSAs and investigation of biological effects.
اظهر المزيد [+] اقل [-]Serum POP concentrations are highly predictive of inner blubber concentrations at two extremes of body condition in northern elephant seals
2016
Peterson, Michael G. | Peterson, Sarah H. | Debier, Cathy | Covaci, Adrian | Dirtu, Alin C. | Malarvannan, Govindan | Crocker, Daniel E. | Costa, Daniel P.
Long-lived, upper trophic level marine mammals are vulnerable to bioaccumulation of persistent organic pollutants (POPs). Internal tissues may accumulate and mobilize POP compounds at different rates related to the body condition of the animal and the chemical characteristics of individual POP compounds; however, collection of samples from multiple tissues is a major challenge to ecotoxicology studies of free-ranging marine mammals and the ability to predict POP concentrations in one tissue from another tissue remains rare. Northern elephant seals (Mirounga angustirostris) forage on mesopelagic fish and squid for months at a time in the northeastern Pacific Ocean, interspersed with two periods of fasting on land, which results in dramatic seasonal fluctuations in body condition. Using northern elephant seals, we examined commonly studied tissues in mammalian toxicology to describe relationships and determine predictive equations among tissues for a suite of POP compounds, including ΣDDTs, ΣPCBs, Σchlordanes, and ΣPBDEs. We collected paired blubber (inner and outer) and blood serum samples from adult female and male seals in 2012 and 2013 at Año Nuevo State Reserve (California, USA). For females (N = 24), we sampled the same seals before (late in molting fast) and after (early in breeding fast) their approximately seven month foraging trip. For males, we sampled different seals before (N = 14) and after (N = 15) their approximately four month foraging trip. We observed strong relationships among tissues for many, but not all compounds. Serum POP concentrations were strong predictors of inner blubber POP concentrations for both females and males, while serum was a more consistent predictor of outer blubber for males than females. The ability to estimate POP blubber concentrations from serum, or vice versa, has the potential to enhance toxicological assessment and physiological modeling. Furthermore, predictive equations may illuminate commonalities or distinctions in bioaccumulation across marine mammal species.
اظهر المزيد [+] اقل [-]Blood dynamics of mercury and selenium in northern elephant seals during the lactation period
2011
The effects of reproduction and maternal investment (i.e., milk transfer) on trace element levels remain poorly understood in marine mammals. We examined the blood dynamics of mercury (Hg) and selenium (Se) during lactation in the northern elephant seal (Mirounga angustirostris), a top predator from the North Pacific Ocean. Total Hg and Se levels were measured in whole blood and milk of 10 mother–pup pairs on days 5 and 22 of lactation. Both Hg and Se were transferred to offspring through the milk. Results suggested that the maternal transfer of Se was prominent during lactation, whereas the Hg transfer was larger during gestation. The lactation period affected Hg and Se levels in the blood of elephant seal mothers and pups. Physiological processes and their relationship to body condition should be considered carefully when interpreting trace element levels in the framework of biomonitoring.
اظهر المزيد [+] اقل [-]Feeding and contaminant patterns of sub-arctic and arctic ringed seals: Potential insight into climate change-contaminant interactions
2022
Facciola, Nadia | Houde, Magali | Muir, Derek C.G. | Ferguson, Steven H. | McKinney, Melissa A.
To provide insight into how climate-driven diet shifts may impact contaminant exposures of Arctic species, we compared feeding ecology and contaminant concentrations in ringed seals (Pusa hispida) from two Canadian sub-Arctic (Nain at 56.5°N, Arviat at 61.1°N) and two Arctic sites (Sachs Harbour at 72.0 °N, Resolute Bay at 74.7 °N). In the sub-Arctic, empirical evidence of changing prey fish communities has been documented, while less community change has been reported in the Arctic to date, suggesting current sub-Arctic conditions may be a harbinger of future Arctic conditions. Here, Indigenous partners collected tissues from subsistence-harvested ringed seals in 2018. Blubber fatty acids (FAs) and muscle stable isotopes (δ¹⁵N, δ¹³C) indicated dietary patterns, while measured contaminants included heavy metals (e.g., total mercury (THg)), legacy persistent organic pollutants (e.g., dichlorodiphenyltrichloroethanes (DDTs)), polybrominated diphenyl ethers (PBDEs), and per-/polyfluoroalkyl substances (PFASs). FA signatures are distinct between sub-Arctic and Resolute Bay seals, likely related to higher consumption of southern prey species including capelin (Mallotus villosus) in the sub-Arctic but on-going feeding on Arctic species in Resolute Bay. Sachs Harbour ringed seals show FA overlap with all locations, possibly consuming both southern and endemic Arctic species. Negative δ¹³C estimates for PFAS models suggest that more pelagic, sub-Arctic type prey (e.g., capelin) increases PFAS concentrations, whereas the reverse occurs for, e.g., THg, ΣPBDE, and ΣDDT. Inconsistent directionality of δ¹⁵N estimates in the models likely reflects baseline isotopic variation not trophic position differences. Adjusting for the influence of diet suggests that if Arctic ringed seal diets become more like sub-Arctic seals due to climate change, diet-driven increases may occur for newer contaminants like PFASs, but not for more legacy contaminants. Nonetheless, temporal trends studies are still needed, as are investigations into the potential confounding influence of baseline isotope variation in spatial studies of contaminants in Arctic biota.
اظهر المزيد [+] اقل [-]Bioaccumulation and biomagnification of perfluoroalkyl acids and precursors in East Greenland polar bears and their ringed seal prey
2019
Boisvert, Gabriel | Sonne, Christian | Rigét, Frank F. | Dietz, Rune | Letcher, Robert J.
The bioaccumulation and biomagnification of 22 major perfluoroalkyl substances (PFAS) were investigated in tissues of polar bears (Ursus maritimus) and their major prey species, the ringed seal (Pusa hispida), from the Scoresby Sound region of East Greenland. In polar bear liver the mean Σ4PFSA (perfluoroalkyl sulfonic acid) concentration (C4, C6, C8 and C10) was 2611 ± 202 ng/g wet weight (ww; 99% perfluorooctane sulfonate (PFOS)) and two orders of magnitude higher than the 20 ± 3 ng/g ww (89% PFOS) concentration in fat. The mean Σ4PFSAs in seal liver was 111 ± 5 ng/g ww (98% PFOS) and three orders of magnitude higher relative to the 0.05 ± 0.01 ng/g ww concentration in blubber (100% perfluorohexane sulfonate). Perfluoro-1-octane sulfonamide (FOSA) was quantifiable in bear (mean 10 ± 1.4 ng/g ww) and seal (mean 0.6 ± 0.1 ng/g ww) liver but not in fat or blubber. The mean Σ13PFCAs (C4–C18; perfluoroalkyl carboxylic acids) in bear liver (924 ± 71 ng/g ww) was much greater than in seal liver (74 ± 6 ng/g ww). In bear fat and seal blubber, the mean Σ13PFCAs were 15 ± 1.9 and 0.9 ± 0.1 ng/g ww, respectively. Longer chain C11 to C14 PFCAs dominated in bear fat and seal blubber (60–80% of Σ13PFCA), whereas shorter-chain C9 to C11 PFCAs dominated in the liver (85–90% of Σ13PFCA). Biomagnification factors (BMFs) were orders of magnitude greater for PFHxS and C9 to C13 PFCAs when based on bear liver to seal blubber rather than bear liver to seal liver, and PFCA (C9 to C13) BMFs decreased with increasing chain length. Seal blubber to bear liver BMFs better reflects the dietary exposure relationship of PFAS between bears and seals.
اظهر المزيد [+] اقل [-]Investigating microplastic trophic transfer in marine top predators
2018
Microplastics are highly bioavailable to marine organisms, either through direct ingestion, or indirectly by trophic transfer from contaminated prey. The latter has been observed for low-trophic level organisms in laboratory conditions, yet empirical evidence in high trophic-level taxa is lacking. In natura studies face difficulties when dealing with contamination and differentiating between directly and indirectly ingested microplastics. The ethical constraints of subjecting large organisms, such as marine mammals, to laboratory investigations hinder the resolution of these limitations. Here, these issues were resolved by analysing sub-samples of scat from captive grey seals (Halichoerus grypus) and whole digestive tracts of the wild-caught Atlantic mackerel (Scomber scombrus) they are fed upon. An enzymatic digestion protocol was employed to remove excess organic material and facilitate visual detection of synthetic particles without damaging them. Polymer type was confirmed using Fourier-Transform Infrared (FTIR) spectroscopy. Extensive contamination control measures were implemented throughout. Approximately half of scat subsamples (48%; n = 15) and a third of fish (32%; n = 10) contained 1–4 microplastics. Particles were mainly black, clear, red and blue in colour. Mean lengths were 1.5 mm and 2 mm in scats and fish respectively. Ethylene propylene was the most frequently detected polymer type in both. Our findings suggest trophic transfer represents an indirect, yet potentially major, pathway of microplastic ingestion for any species whose feeding ecology involves the consumption of whole prey, including humans.
اظهر المزيد [+] اقل [-]