خيارات البحث
النتائج 1 - 2 من 2
Aerosols from a wastewater treatment plant using oxidation ditch process: Characteristics, source apportionment, and exposure risks
2019
Yang, Dang | Han, Yunping | Liu, Junxin | Li, Lin
The study of aerosol dispersion characteristics in wastewater treatment plants (WWTPs) has attracted extensive attention. Oxidation ditch (OD) is a commonly implemented process during biological wastewater treatment. This study assessed the component characteristics, source apportionment, and exposure risks of aerosols generated from a WWTP using the OD process (AWO). The results indicated that the aeration part of oxidation ditch (ODA) exhibited the highest concentrations and proportions of the respiratory fractions (RF) of bacteria, Enterobacteriaceae, Staphylococcus aureus, and Pseudomonas aeruginosa. Some pathogenic or opportunistic-pathogenic bacteria and carcinogenic metal(loid)s were detected in the AWO. The source apportionment results indicated that the outdoor wastewater treatment processes and ambient air contributed to the constitution of the AWO. The indoor aerosols were mainly constituted by composition of the wastewater treatment process such as the sludge dewatering room (SDR). The pathogenic or opportunistic-pathogenic bacteria with eight genera (Colinsella, Dermatophilus, Enterobactor, Erycherichia-Shigella, Ledionella, Selenomonas, Xanthobacter, and Veillonella) were largely attributed to wastewater or sludge. The risk assessment suggested that inhalation was the main exposure pathway for aerosols (including bacteria and metal(loid)s). Additionally, As indicated the highest non-carcinogenic risks. Furthermore, As, Cd, and Co were associated with high carcinogenic risks. The ODA and sludge dewatering room (SDR) indicated the highest carcinogenic and non-carcinogenic risks of metal(loid)s, respectively. Thus, the AWO should be sufficiently researched and monitored to mitigate their harmful effects on human health, particularly with regard to the health of the site workers.
اظهر المزيد [+] اقل [-]Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste
2020
Przemieniecki, Sebastian W. | Kosewska, Agnieszka | Ciesielski, Sławomir | Kosewska, Olga
Recent studies have demonstrated the ability of mealworm (Tenebrio molitor) for plastic degradation. This study is focused on changes in microbiome structure depending on diets. Microbial community obtained from oat and cellulose diet formed similar group, two kinds of polyethylene formed another group, while polystyrene diet showed the highest dissimilarity. The highest relative abundance of bacteria colonizing gut was in PE-oxodegradable feeding, nevertheless all applied diets were higher in comparison to oat. Dominant phyla consisted of Proteobacteria, Bacteroides, Firmicutes and Actinobacteria, however after PS feeding frequency in Planctomycetes and Nitrospirae increased. The unique bacteria characteristic for cellulose diet belonged to Selenomonas, while Pantoea were characteristic for both polyethylene diets, Lactococcus and Elizabethkingia were unique for each plastic diet, and potential diazotropic bacteria were characteristic for polystyrene diet (Agrobacterium, Nitrosomonas, Nitrospira).Enzymatic similarity between oatmeal and cellulose diets, was shown. All three plastics diet resulted in different activity in both, digestive tract and bacteria. The enzymes with the highest activity were included phosphatases, esterases, leucine arylamidase, β-galactosidase, β-glucuronidase, α-glucosidase, β-glucosidase, chitinase, α-mannosidase and α-fucosidase. The activity of digestive tract was stronger than cultured gut bacteria. In addition to known polyethylene degradation methods, larvae may degrade polyethylene with esterase, cellulose and oatmeal waste activity is related with the activity of sugar-degrading enzymes, degradation of polystyrene with anaerobic processes and diazotrophs.
اظهر المزيد [+] اقل [-]