خيارات البحث
النتائج 1 - 6 من 6
Waste recombinant DNA: Effectiveness of thermo-treatment to manage potential gene pollution
2009
Fu, Xiaohua | Li, Mengnan | Zheng, Guanghong | Le, Yiquan | Wang, Lei
Heating at 100 °C for 5-10 min is a common method for treating wastewater containing recombinant DNA in many bio-laboratories in China. In this experiment, plasmid pET-28b was used to investigate decay efficiency of waste recombinant DNA during thermo-treatment. The results showed that the decay half-life of the plasmid was 2.7-4.0 min during the thermo-treatment, and even heating for 30 min the plasmids still retained some transforming activity. Low pH promoted the decay of recombinant DNA, but NaCl, bovine serum albumin and EDTA, which existed in the most wastewater from bio-laboratories, protected DNA from degradation. Thus, the decay half-life of plasmid DNA may be longer than 2.7-4.0 min practically. These results suggest that the effectiveness of heating at 100 °C for treating waste recombinant DNA is low and a gene pollution risk remains when those thermo-treated recombinant DNAs are discharged into the environment. Therefore other simple and effective methods should be developed. Heating at 100 °C for 5-10 min to treat waste recombinant DNA has potential eco-risk.
اظهر المزيد [+] اقل [-]Serum albumin mediates the effect of multiple per- and polyfluoroalkyl substances on serum lipid levels
2020
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are synthetically manufactured chemicals recognized to be toxic, bioaccumulative, and persistent. Previous studies on PFAS exposure and serum lipid levels have mainly focused on individual PFASs; however, the influence of multiple-PFAS exposure on the serum lipid profile remains unclear. This study was performed to evaluate the combined effects of multiple PFASs on serum lipid levels. Based on the National Health and Nutrition Examination Survey (NHANES) data (2011–2014), we first established a linear regression model to estimate the association between single-PFAS exposure and the serum lipid profile. Then, a weighted quantile sum (WQS) regression model and a Bayesian kernel machine regression (BKMR) model were used to evaluate the effects of multiple-PFAS exposure on the serum lipid profile. A mediating effect model was used to assess how albumin mediates these effects. We found that PFASs were significantly associated with the levels of serum lipids, including high-density lipoprotein (HDL), low-density lipoprotein (LDL) and total cholesterol (TC). The WQS index was significantly correlated with the levels of HDL (β: 2.03, 95% CI: 0.74–3.32, P-value = 0.002), LDL (β: 4.16, 95% CI: 1.07–7.24, P-value = 0.008) and TC (β: 6.54, 95% CI: 3.00–10.1, P-value < 0.001). In the BKMR analysis, our results demonstrated that the effect of PFASs on serum lipids increased significantly when the concentrations of the PFASs were at their 60th percentiles or above compared to those at their 50th percentile. Mediation analysis showed that albumin mediated the effects of selected PFASs on the levels of serum lipids except for triglycerides (TG). PFAS exposure was correlated with the levels of serum lipids, and this correlation was mediated by albumin. Our results suggest that a comprehensive evaluation of multi-PFAS exposure could better characterize real-life exposure compared with single-PFAS exposure.
اظهر المزيد [+] اقل [-]Transport of biochar colloids in saturated porous media in the presence of humic substances or proteins
2019
Yang, Wen | Bradford, Scott A. | Wang, Yang | Sharma, Prabhakar | Shang, Jianying | Li, Baoguo
Application of biochar in the field has received considerable attention in recent years, but there is still little known about the fate and transport of biochar colloids (BCs) in the subsurface. Natural organic matter (NOM), which mainly consists of humic substance (HS) and proteins, is ubiquitous in the natural environment and its dissolved fraction is active and mobile. In this study, the transport of BCs in saturated porous media has been examined in the presence of two HS (humic and fulvic acids) and two proteins. Bull serum albumin (BSA) and Cytochrome c (Cyt) were selected to present the negatively and positively charged protein, respectively. At low and high salt concentration and different pH conditions, the transport of BCs was strongly promoted by HS. HS significantly increased the mobility of BCs in porous media under both low and high salt conditions due to the enhanced electrostatic repulsion and modification of surface roughness and charge heterogeneity. While BC mobility in porous media was suppressed by both BSA and Cyt in the low salt solution, the presence of BSA largely promoted and Cyt slightly enhanced the transport of BCs in high salt solutions. BSA and Cyt adsorption onto BC surface decreased the negative charge of BC and resulted in a less repulsive interaction in low salt solutions. In high salt solutions, the adsorbed BSA layers disaggregated BCs and reduced the strength of the interaction between BC and the sand. Adsorbed Cyt on BCs caused more attractive patches between BC and sand surface, and greater retention than BSA.
اظهر المزيد [+] اقل [-]Effects of bisphenol a on hematological, serum biochemical, and histopathological biomarkers in bighead carp (Aristichthys nobilis) under long-term exposure
2022
Akram, Rabia | Iqbal, Rehana | Hussain, Riaz | ʻAlī, Muḥammad
Bisphenol A (BPA) is one of the highest volume chemicals produced in the world and is frequently used in dental sealants, water bottles, food, and beverage packaging. Due to persistent applications, BPA has become a potential threat to a variety of organisms including public health. In this study, a total of 80 bighead carps were randomly placed in different four groups (A–D). Fish in groups B, C, and D were exposed to BPA @500, 1000, and 1500 μg/L, respectively for 60 days. Fish in group A served as an untreated control group. The body weight was significantly decreased while the absolute and relative weight of different visceral organs increased significantly (p < 0.05) in fish exposed to higher concentration (1500 μg/L) of BPA. Results on proximate analysis showed significantly lower values of crude proteins, lipids, and moisture contents while increased contents of ash in muscles of treated fish. The erythrocyte counts, hemoglobin concentration, lymphocytes, and monocytes significantly decreased while total leukocyte and neutrophil counts significantly increased in treated fish. Results exhibited that different serum biochemistry parameters like serum albumin and total proteins decreased significantly (p < 0.05) while alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), urea, creatinine, glucose, cholesterol, and lactate dehydrogenase (LDH) increased significantly (p < 0.05) in treated fish. Histopathological ailments like pyknosis, degeneration of glomeruli, increased Bowman’s space, ceroid formation in kidneys while ceroid formation, hemorrhages, pyknosis, karyorrhexis, karyolysis, nuclear hypertrophy, and eccentric nuclei were observed in the liver of treated fish. Histological observation of different sections of the brain of treated fish exhibited degeneration of neurons in the cerebellum, lipofuscin deposition, microgliosis, necrotic neurons, inflammatory cells, and hemorrhage. Results on light microscopic observation of different sections of the heart of bighead carp revealed necrosis, inflammatory reaction, neutrophilic myocarditis, and hemorrhages. In conclusion, it is suggested that BPA induces adverse effects on physical, blood-biochemical parameters, and histopathological changes in multiple visceral tissues of exposed fish.
اظهر المزيد [+] اقل [-]Effects of bromide and iodide ions on the formation of disinfection by-products during ozonation and subsequent chlorination of water containing biological source matters
2014
Zha, Xiao-song | Liu, Yan | Liu, Xiang | Zhang, Qiang | Dai, Rui-hua | Ying, Ling-wen | Wu, Jin | Wang, Jing-ting | Ma, Luming
This study aims to investigate the influence of the coexistence of halogen ions (bromide/iodide) and biological source matters on the speciation and yield of trihalomethanes (THMs), haloacetic acids (HAAs), and N-nitrosodimethylamine (NDMA) during the ozonation and subsequent chlorination of water. The results show that the concentrations of brominated THMs and iodinated THMs increased with increasing bromide and iodide concentration. These results may be attributed to the higher reactivity of hypobromous acid and hypoiodous acid generated from the ozonation and subsequent chlorination in the presence of bromide or iodide ions. The presence of bromide increased the species of brominated HAAs. There was a shift from chlorinated HAAs to brominated HAAs after increasing the concentration of bromide. The effect of iodide on HAA formation was more complex than bromide. For most samples, the concentration of total HAAs (T-HAAs) increased to the maximum and then decreased with increasing iodide concentration. The components of the organic precursors also significantly influenced the formation of brominated and iodinated disinfection by-products (Br-DBPs and I-DBPs). Humic acids produced more CHBr₃(596.60 μg/L) than other organic materials. Microcystis aeruginosa cells produced the most tribromoacetic acid (TBAA, 84.16 μg/L). Furthermore, the yield of NDMA decreased with increasing bromide concentration, indicating that the formation of NDMA was inhibited by the high concentration of bromide.
اظهر المزيد [+] اقل [-]Sub-chronic exposure to low concentration of dibutyl phthalate affects anthropometric parameters and markers of obesity in rats
2017
Majeed, Khalid Abdul | ur Rehman, Habib | Yousaf, Muhammad Shahbaz | Zaneb, Hafsa | Rabbani, Imtiaz | Tahir, Sajid Khan | Rashid, Muhammad Afzal
Dibutyl phthalate is an important phthalate ester extensively used in various products like plastics, adhesives, inks, pharmaceuticals, lacquers, varnishes, paper coatings, safety glasses, and cosmetics. The exposure of DBP to “one’s health” is therefore inevitable. The present study focuses on elucidating the effect of low doses of DBP on anthropometric parameters and markers of obesity in rats in a 13-week study. A total of 48 rats were divided into three treatment groups as mg DBP/kg body weight per day: (a) 0 mg/kg (control), (b) 10 mg/kg (DBP-10), and (c) 50 mg/kg (DBP-50). The rats in each treatment (n = 16) were further equally divided into male and female rats for studying treatment and gender interaction. Anthropometric parameters, nutritional determinants, and markers of obesity in rats were studied. Two-way ANOVA was used to analyze the data (p < 0.05). Tukey’s post hoc test was used for pairwise comparisons. DBP increased body weight gain, feed efficiency, abdominal to thoracic circumference ratio, and body mass index in rats. Serum cholesterol and alkaline phosphatase concentrations decreased with DBP treatment. Serum albumin, glucose, creatinine, and alanine transaminase increased with DBP treatments. Serum lactate dehydrogenase increased in DBP-10 but was not affected by DBP-50. Further low-dose investigations are needed to assess non-monotonic dose responses.
اظهر المزيد [+] اقل [-]