خيارات البحث
النتائج 1 - 10 من 76
Plant-derived saponin enhances biodegradation of petroleum hydrocarbons in the rhizosphere of native wild plants
2022
Hoang, Son A. | Lamb, Dane | Sarkar, Binoy | Seshadri, Balaji | Lam, Su Shiung | Vinu, Ajayan | Bolan, Nanthi S.
Plant-derived saponins are bioactive surfactant compounds that can solubilize organic pollutants in environmental matrices, thereby facilitating pollutant remediation. Externally applied saponin has potential to enhance total petroleum hydrocarbon (TPH) biodegradation in the root zone (rhizosphere) of wild plants, but the associated mechanisms are not well understood. For the first time, this study evaluated a triterpenoid saponin (from red ash leaves, Alphitonia excelsa) in comparison to a synthetic surfactant (Triton X-100) for their effects on plant growth and biodegradation of TPH in the rhizosphere of two native wild species (a grass, Chloris truncata, and a shrub, Hakea prostrata). The addition of Triton X-100 at the highest level (1000 mg/kg) in the polluted soil significantly hindered the plant growth (reduced plant biomass and photosynthesis) and associated rhizosphere microbial activity in both the studied plants. Therefore, TPH removal in the rhizosphere of both plant species treated with the synthetic surfactant was not enhanced (at the lower level, 500 mg/kg soil) and even slightly decreased (at the highest level) compared to that in the surfactant-free (control) treatment. By contrast, TPH removal was significantly increased with saponin application (up to 60% in C. truncata at 1000 mg/kg due to enhanced plant growth and associated rhizosphere microbial activity). No significant difference was observed between the two saponin application levels. Dehydrogenase activity positively correlated with TPH removal (p < 0.001) and thus this parameter could be used as an indicator to predict the rhizoremediation efficiency. This work indicates that saponin-amended rhizoremediation could be an environmentally friendly and effective biological approach to remediate TPH-polluted soils. It was clear that the enhanced plant growth and rhizosphere microbial activity played a crucial role in TPH rhizoremediation efficiency. The saponin-induced molecular processes that promoted plant growth and soil microbial activity in the rhizosphere warrant further studies.
اظهر المزيد [+] اقل [-]Assessment of the ability of roadside vegetation to remove particulate matter from the urban air
2021
Kończak, B. | Cempa, M. | Pierzchała, Ł | Deska, M.
The development of urbanised areas together with the growing transport infrastructure and traffic volume are the main cause of air quality deterioration due to the increasing concentrations of particulate matter. Dust pollution is a threat to human health. It can cause the development of lung, larynx or circulatory system cancer. Due to the ability to accumulate dust particles on the leaf surface, the contribution of trees in the process of phytoremediation of air pollution has started to be appreciated. An analysis of the elemental composition of particulate matter (PM) stored on the leaves surface was also carried out, which showed high average concentration of: C > O > Si > Fe (above 8wt.%). It was also observed single particles with a high concentration of heavy metals: Ti, Mn, Ba, Zn, Cr, Pb, Sn, Ni and REE (rare earth elements). The major origin of PM are vehicular emissions, soil and re-suspended road dust. This paper presents also a comparison of selected tree, shrub and vine species differing in their ability to accumulate particulate matter. It was experimentally determined the average leaf surface of individual plant species and established the amount of particulate matter with aerodynamic diameter between 10 and 100 μm, 2.5 and 10 μm, and 0.2 and 2.5 μm deposited on the leaf surface and in waxes.Some species of vines (Parthenocissus quinquefolia), shrubs (Forsythia x intermediata) and coniferous trees, such as Betula pendula ‘Youngii’, Quercus rubra, Cratageus monogyna, Acer pseduoplatanus, Tilia cordata Mill. or Platanus orientalis turned out to be the most efficient in the process of phylloremediation.
اظهر المزيد [+] اقل [-]Light absorption and emissions inventory of humic-like substances from simulated rainforest biomass burning in Southeast Asia
2020
Tang, Jiao | Li, Jun | Mo, Yangzhi | Safaei Khorram, Mahdi | Chen, Yingjun | Tang, Jianhui | Zhang, Yanlin | Song, Jianzhong | Zhang, Gan
Humic-like substances (HULIS) are complex mixtures that are highly associated with brown carbon (BrC) and are important components of biomass burning (BB) emissions. In this study, we investigated the light absorption, emission factors (EFs), and amounts of HULIS emitted from the simulated burning of 27 types of regionally important rainforest biomass in Southeast Asia. We observed that HULIS had a high mass absorption efficiency at 365 nm (MAE₃₆₅), with an average value of 2.6 ± 0.83 m² g⁻¹ C. HULIS emitted from BB accounted for 65% ± 13% of the amount of water-soluble organic carbon (WSOC) and 85% ± 10% of the light absorption of WSOC at 365 nm. The EFs of HULIS from BB averaged 2.3 ± 2.1 g kg⁻¹ fuel, and the burning of the four vegetation subtypes (herbaceous plants, shrubs, evergreen trees, and deciduous trees) exhibited different characteristics. The differences in EFs among the subtypes were likely due to differences in lignin content in the vegetation, the burning conditions, or other factors. The light absorption characteristics of HULIS were strongly associated with the EFs. The annual emissions (minimum–maximum) of HULIS from BB in this region in 2016 were 200–371 Gg. Furthermore, the emissions from January to April accounted for 99% of the total annual emissions of HULIS, which is likely the result of the burning activities during this season. The most significant emission regions were Cambodia, Burma, Thailand, and Laos. This study, which evaluated emissions of HULIS by simulating open BB, contributes to a better understanding of the light-absorbing properties and regional budgets of BrC in this region.
اظهر المزيد [+] اقل [-]Plant community and litter composition in temperate deciduous woodlots along two field gradients of soil Ni, Cu and Co concentrations
2016
Hale, Beverley | Robertson, Paul
Perennial plant communities in the proximity of metal smelters and refineries may receive substantial inputs of base metal particulate as well as sulphate from the co-emission of sulphur dioxide. The Ni refinery at Port Colborne (Canada) operated by Inco (now Vale Canada Ltd.) emitted Ni, Co and Cu, along with sulphur dioxide, between 1918 and 1984. The objectives were to determine if vascular plant community composition, including standing litter, in twenty-one woodlots on clay or organic soil, were related to soil Ni concentration which decreased in concentration with distance from the Ni refinery. The soil Ni concentration in the clay woodlots ranged from 16 to 4130 mg Ni/kg, and in the organic woodlots, ranged from 98 to 22,700 mg Ni/kg. The concentrations of Co and Cu in the soils were also elevated, and highly correlated with soil Ni concentration. In consequence, each series of woodlots constituted a ‘fixed ratio ray’ of metal mixture exposure. For each of the woodlots, there were 16 independent measurements of ‘woodlot status’ which were correlated with elevated soil Ni concentration. Of the 32 combinations, there were eight linear correlations with soil Ni concentration, considerably more than would be expected by chance alone at a p-value of 0.05. With the exception of mean crown rating for shrubs at the clay sites, the correlations were consistent with the hypothesis that increased soil metal concentrations would be correlated with decreased diversity, plant community health or fitness, and increased accumulation of litter. Only five of the eight linear correlations were from the organic woodlots, suggesting that the observations were not confounded with soil type nor range in soil metal concentrations.
اظهر المزيد [+] اقل [-]The role of a peri-urban forest on air quality improvement in the Mexico City megalopolis
2012
Baumgardner, Darrel | Varela, Sebastian | Escobedo, Francisco J. | Chacalo, Alicia | Ochoa, Carlos
Air quality improvement by a forested, peri-urban national park was quantified by combining the Urban Forest Effects (UFORE) and the Weather Research and Forecasting coupled with Chemistry (WRF-Chem) models. We estimated the ecosystem-level annual pollution removal function of the park’s trees, shrub and grasses using pollution concentration data for carbon monoxide (CO), ozone (O₃), and particulate matter less than 10 microns in diameter (PM₁₀), modeled meteorological and pollution variables, and measured forest structure data. Ecosystem-level O₃ and CO removal and formation were also analyzed for a representative month. Total annual air quality improvement of the park’s vegetation was approximately 0.02% for CO, 1% for O₃, and 2% for PM₁₀, of the annual concentrations for these three pollutants. Results can be used to understand the air quality regulation ecosystem services of peri-urban forests and regional dynamics of air pollution emissions from major urban areas.
اظهر المزيد [+] اقل [-]A vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel tests and its application in pollutant dispersion studies
2011
Gromke, Christof
A new vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel investigations was developed. The modeling concept is based on fluid dynamical similarity aspects and allows the small-scale modeling of various kinds of vegetation, e.g. field crops, shrubs, hedges, single trees and forest stands. The applicability of the modeling concept was validated in wind tunnel pollutant dispersion studies. Avenue trees in urban street canyons were modeled and their implications on traffic pollutant dispersion were investigated. The dispersion experiments proved the modeling concept to be practicable for wind tunnel studies and suggested to provide reliable concentration results. Unfavorable effects of trees on pollutant dispersion and natural ventilation in street canyons were revealed. Increased traffic pollutant concentrations were found in comparison to the tree-free reference case.
اظهر المزيد [+] اقل [-]A novel approach for long-term spectral monitoring of desert shrubs affected by an oil spill
2021
Ignat, Timea | De Falco, Natalie | Berger-Tal, Reut | Rachmilevitch, Shimon | Karnieli, Arnon
Crude oil pollution is a global environmental concern since it persists in the environment longer than most conventional carbon sources. In December 2014, the hyper-arid Evrona Nature Reserve, Israel, experienced large-scale contamination when crude oil spilled. The overarching goal of the study was to investigate the possible changes, caused by an accidental crude oil spill, in the leaf reflectance and biochemical composition of four natural habitat desert shrubs. The specific objectives were (1) to monitor the biochemical properties of dominant shrub species in the polluted and control areas; (2) to study the long-term consequences of the contamination; (3) to provide information that will assist in planning rehabilitation actions; and (4) to explore the feasibility of vegetation indices (VIs), along with the machine learning (ML) technique, for detecting stressed shrubs based on the full spectral range. Four measurement campaigns were conducted in 2018 and 2019. Along with the various stress indicators, field spectral measurements were performed in the range of 350–2500 nm. A regression analysis to examine the relation of leaf reflectance to biochemical contents was carried out, to reveal the relevant wavelengths in which polluted and control plants differ. Vegetation indices applied in previous studies were found to be less sensitive for indirect detection of long-term oil contamination. A novel spectral index, based on indicative spectral bands, named the “normalized blue-green stress index” (NBGSI), was established. The NBGSI distinguished significantly between shrubs located in the polluted and in the control areas. The NBGSI showed a strong linear correlation with pheophytin a. Machine learning classification algorithms obtained high overall prediction accuracy in distinguishing between shrubs located in the oil-polluted and the control sites, indicating internal component differences. The findings of this study demonstrate the efficacy of indirect and non-destructive spectral tools for detecting and monitoring oil pollution stress in shrubs.
اظهر المزيد [+] اقل [-]Long-term effects of atmospheric deposition on British plant species richness
2021
Tipping, Edward | Davies, Jessica A.C. | Henrys, Peter A. | Jarvis, Susan G. | Smart, S. M. (Simon M.)
The effects of atmospheric pollution on plant species richness (nₛₚ) are of widespread concern. We carried out a modelling exercise to estimate how nₛₚ in British semi-natural ecosystems responded to atmospheric deposition of nitrogen (Ndₑₚ) and sulphur (Sdₑₚ) between 1800 and 2010. We derived a simple four-parameter equation relating nₛₚ to measured soil pH, and to net primary productivity (NPP), calculated with the N14CP ecosystem model. Parameters were estimated from a large data set (n = 1156) of species richness in four vegetation classes, unimproved grassland, dwarf shrub heath, peatland, and broadleaved woodland, obtained in 2007. The equation performed reasonably well in comparisons with independent observations of nₛₚ. We used the equation, in combination with modelled estimates of NPP (from N14CP) and soil pH (from the CHUM-AM hydrochemical model), to calculate changes in average nₛₚ over time at seven sites across Britain, assuming that variations in nₛₚ were due only to variations in atmospheric deposition. At two of the sites, two vegetation classes were present, making a total of nine site/vegetation combinations. In four cases, nₛₚ was affected about equally by pH and NPP, while in another four the effect of pH was dominant. The ninth site, a chalk grassland, was affected only by NPP, since soil pH was assumed constant. Our analysis suggests that the combination of increased NPP, due to fertilization by Ndₑₚ, and decreased soil pH, primarily due to Sdₑₚ, caused an average species loss of 39% (range 23–100%) between 1800 and the late 20th Century. The modelling suggests that in recent years nₛₚ has begun to increase, almost entirely due to reductions in Sdₑₚ and consequent increases in soil pH, but there are also indications of recent slight recovery from the eutrophying effects of Ndₑₚ.
اظهر المزيد [+] اقل [-]Particulate matter transported from urban greening plants during precipitation events in Beijing, China
2019
Cai, Mengfan | Xin, Zhongbao | Yu, Xinxiao
Particulate matter (PM) deposited on canopy surfaces could be washed off and carried in throughfall to the ground. This would help plants recapture airborne PM on their canopy surfaces and then develop a PM purification capacity. Sixteen commonly greening plant species in north China (including 13 arbor species and 3 shrub species) were selected to investigate the washing process of plant-deposited PM during precipitation events. We measured the PM wash-off mass in throughfall under canopies of 16 plant species and in atmospheric precipitation during 14 precipitation events through field positioning experiments in 2015, compared the seasonal changes and species differences in PM wash-off mass, and discussed the predominant factors resulting in the variation. The results showed that plant-deposited PM was largely washed off by precipitation. The average wash-off mass of total suspended particulate (TSP) in throughfall was 1.3 times higher than that in precipitation, at 18.3 ± 0.7 kg hm−2 and 7.9 ± 0.9 kg hm−2, respectively. There were significant seasonal differences in TSP wash-off mass. The value was higher in summer at 22.3 ± 1.0 kg hm−2, followed by that of winter (10.8 ± 0.6 kg hm−2) and spring (8.9 ± 1.0 kg hm−2). TSP wash-off mass in throughfall greatly varied among plant species (F = 9.542, n = 627, p < 0.001). Of the 16 selected species, Platanus acerifolia (38.0 ± 5.8 kg hm−2) showed the largest difference from that of Liriodendron chinese (8.9 ± 0.6 kg hm−2) (n = 80, p < 0.001). PM wash-off mass of different particle sizes in throughfall increased with the increase of event-based precipitation. This study enhanced the quantitative understanding of plant-deposited PM washed-off by natural precipitation among plant species and seasons. The results could provide significant guidelines for the selection and allocation of plant species to improve the PM retention capacity of urban greening plants.
اظهر المزيد [+] اقل [-]Experimental examination of effectiveness of vegetation as bio-filter of particulate matters in the urban environment
2016
Chen, Lixin | Liu, Chenming | Zou, Rui | Yang, Mao | Zhang, Zhiqiang
Studies focused on pollutants deposition on vegetation surfaces or aerodynamics of vegetation space conflict in whether vegetation planting can effectively reduce airborne particulate matter (PM) pollution. To achieve a more comprehensive understanding of the conflict, we conducted experiments during 2013 and 2014 in Beijing, China to evaluate the importance of vegetation species, planting configurations and wind in influencing PM concentration at urban and street scales. Results showed that wind field prevailed over the purification function by vegetation at urban scale. All six examined planting configurations reduced total suspended particle along horizontal but not vertical direction. Shrubs and trees–grass configurations performed most effectively for horizontal PM2.5 reduction, but adversely for vertical attenuation. Trapping capacity of PMs was species-specific, but species selection criteria could hardly be generalized for practical use. Therefore, design of planting configuration is practically more effective than tree species selection in attenuating the ambient PM concentrations in urban settings.
اظهر المزيد [+] اقل [-]