خيارات البحث
النتائج 1 - 10 من 43
Ameliorative effects of plant growth promoting bacteria, zinc oxide nanoparticles and oxalic acid on Luffa acutangula grown on arsenic enriched soil
2022
Tanveer, Yashfa | Yasmin, Humaira | Nosheen, Asia | Ali, Sajad | Ahmad, Ajaz
Arsenic (As) contamination and bioaccumulation are a serious threat to agricultural plants. To address this issue, we checked the efficacy of As tolerant plant growth promoting bacteria (PGPB), zinc oxide nanoparticles (ZnO NPs) and oxalic acid (OA) in Luffa acutangula grown on As rich soil. The selected most As tolerant PGPB i.e Providencia vermicola exhibited plant growth promoting features i.e solubilzation of phosphate, potassium and siderophores production. Innovatively, we observed the synergistic effects of P. vermicola, ZnO NPs (10 ppm) and OA (100 ppm) in L. acutangula grown on As enriched soil (150 ppm). Our treatments both as alone and in combination alleviated As toxicity exhibited by better plant growth and metabolism. Results revealed significantly enhanced photosynthetic pigments, proline, relative water content, total sugars, proteins and indole acetic acid along with As amelioration in L. acutangula. Furthermore, upregulated plant resistance was manifested with marked reduction in the lipid peroxidation and electrolyte leakage and pronounced antagonism of As and zinc content in leaves under toxic conditions. These treatments also improved level of nutrients, abscisic acid and antioxidants to mitigate As toxicity. This marked improvement in plants’ defense mechanism of treated plants under As stress is confirmed by less damaged leaves cell structures observed through the scanning electron micrographs. We also found substantial decrease in the As bioaccumulation in the L. acutangula shoots and roots by 40 and 58% respectively under the co-application of P. vermicola, ZnO NPs and OA in comparison with control. Moreover, the better activity of soil phosphatase and invertase was assessed under the effect of our application. These results cast a new light on the application of P. vermicola, ZnO NPs and OA in both separate and combined form as a feasible and ecofriendly tool to alleviate As stress in L. acutangula.
اظهر المزيد [+] اقل [-]Unique biocenosis as a foundation to develop a phytobial consortium for effective bioremediation of Cr(VI)-polluted waters and sediments
2021
Augustynowicz, Joanna | Sitek, Ewa | Latowski, Dariusz | Wołowski, Konrad | Kowalczyk, Anna | Przejczowski, Rafał
This paper analyzes a unique, aquatic phytobial biocenosis that has been forming naturally for over 20 years and operating as a filter for Cr(VI)-polluted groundwater. Our study presents a thorough taxonomic analysis of the biocenosis, including filamentous algae, vascular plants, and microbiome, together with the analysis of Cr accumulation levels, bioconcentration factors and other environmentally-significant parameters: siderophore production by bacteria, biomass growth of the plants or winter hardiness. Among 67 species identified in the investigated reservoir, 13 species were indicated as particularly useful in the bioremediation of Cr(VI)-polluted water and sediment. Moreover, three species of filamentous algae, Tribonema sp., and three easily culturable bacterial species were for the first time shown as resistant to Cr concentration up to 123 mg/dm³, i.e. 6150 times over the permissible level. The work presents a modern holistic phytobial consortium indispensable for the remediation of Cr(VI)-contaminated aquatic environment in temperate zones worldwide.
اظهر المزيد [+] اقل [-]Biodegradation of 4-nitroaniline by novel isolate Bacillus sp. strain AVPP64 in the presence of pesticides
2022
Silambarasan, Sivagnanam | Cornejo, Pablo | Vangnai, Alisa S.
In this study, Bacillus sp. strain AVPP64 was isolated from diuron-contaminated soil. It showed 4-nitroaniline (4-NA) degradation, pesticide tolerance, and self-nutrient integration via nitrogen (N)-fixation and phosphate (P)-solubilization. The rate constant (k) and half-life period (t₁/₂) of 4-NA degradation in the aqueous medium inoculated with strain AVPP64 were observed to be 0.445 d⁻¹ and 1.55 d, respectively. Nevertheless, in the presence of chlorpyrifos, profenofos, atrazine and diuron pesticides, strain AVPP64 degraded 4-NA with t₁/₂ values of 2.55 d, 2.26 d, 2.31 d and 3.54 d, respectively. The strain AVPP64 fixed 140 μg mL⁻¹ of N and solubilized 103 μg mL⁻¹ of P during the presence of 4-NA. In addition, strain AVPP64 produced significant amounts of plant growth-promoting metabolites like indole 3-acetic acid, siderophores, exo-polysaccharides and ammonia. In the presence of 4-NA and various pesticides, strain AVPP64 greatly increased the growth and biomass of Vigna radiata and Crotalaria juncea plants. These results revealed that Bacillus sp. strain AVPP64 can be used as an inoculum for bioremediation of 4-NA contaminated soil and sustainable crop production even when pesticides are present.
اظهر المزيد [+] اقل [-]Plant growth-promoting actinobacterial inoculant assisted phytoremediation increases cadmium uptake in Sorghum bicolor under drought and heat stresses
2022
Silambarasan, Sivagnanam | Logeswari, Peter | Vangnai, Alisa S. | Kamaraj, Balu | Cornejo, Pablo
In this study, two proficient Cadmium (Cd) resistant and plant growth-promoting actinobacterial strains were isolated from metal-polluted soils and identified as Streptomyces sp. strain RA04 and Nocardiopsis sp. strain RA07. Multiple abiotic stress tolerances were found in these two actinobacterial strains, including Cd stress (CdS), drought stress (DS) and high-temperature stress (HTS). Both actinobacterial strains exhibited multifarious plant growth-promoting (PGP) traits such as phosphate solubilization, and production of indole-3-acetic acid, siderophores and 1-aminocyclopropane-1-carboxylate deaminase under CdS, DS and HTS conditions. The inoculation of strains RA04 and RA07 significantly increased Sorghum bicolor growth and photosynthetic pigments under CdS, DS, HTS, CdS + DS and CdS + HTS conditions as compared to their respective uninoculated plants. The actinobacterial inoculants reduced malondialdehyde concentration and enhanced antioxidant enzymes in plants cultivated under various abiotic stress conditions, indicating that actinobacterial inoculants reduced oxidative damage. Furthermore, strains RA04 and RA07 enhanced the accumulation of Cd in plant tissues and the translocation of Cd from root to shoot under CdS, CdS + DS and CdS + HTS treatments as compared to their respective uninoculated plants. These findings suggest that RA04 and RA07 strains could be effective bio-inoculants to accelerate phytoremediation of Cd polluted soil even in DS and HTS conditions.
اظهر المزيد [+] اقل [-]Catecholate-siderophore produced by As-resistant bacterium effectively dissolved FeAsO4 and promoted Pteris vittata growth
2015
Liu, Xue | Yang, Guang-Mei | Guan, Dong-Xing | Ghosh, Piyasa | Ma, Lena Q.
The impact of siderophore produced by arsenic-resistant bacterium Pseudomonas PG12 on FeAsO4 dissolution and plant growth were examined. Arsenic-hyperaccumulator Pteris vittata was grown for 7 d in 0.2-strength Fe-free Hoagland solution containing FeAsO4 mineral and PG12-siderophore or fungal-siderophore desferrioxamine B (DFOB). Standard siderophore assays indicated that PG12-siderophore was catecholate-type. PG12-siderophore was more effective in promoting FeAsO4 dissolution, and Fe and As plant uptake than DFOB. Media soluble Fe and As in PG12 treatment were 34.6 and 3.07 μM, 1.6- and 1.4-fold of that in DFOB. Plant Fe content increased from 2.93 to 6.24 g kg−1 in the roots and As content increased from 14.3 to 78.5 mg kg−1 in the fronds. Besides, P. vittata in PG12 treatment showed 2.6-times greater biomass than DFOB. While P. vittata fronds in PG12 treatment were dominated by AsIII, those in DFOB treatment were dominated by AsV (61–77%). This study showed that siderophore-producing arsenic-resistant rhizobacteria may have potential in enhancing phytoremediation of arsenic-contaminated soils.
اظهر المزيد [+] اقل [-]Effects of urease-producing bacteria and eggshell on physiological characteristics and Cd accumulation of pakchoi (Brassica chinensis L.) plants
2022
Wei, Ting | Li, Hong | Yashir, Noman | Li, Xian | Jia, Honglei | Ren, Xinhao | Yang, Jing | Hua, Li
Soil cadmium (Cd) contamination resulting from anthropogenic activity poses severe threats to food safety and human health. In this study, a pot experiment was performed to evaluate the possibility of using urease-producing bacterium UR21 and eggshell (ES) waste for improving the physiological characteristics and reducing Cd accumulation of pakchoi (Brassica chinensis L.) plants. UR21 has siderophore and IAA production ability. The application of UR21 and ES individually or in combination could improve the root and shoot length, and fresh and dry weight of pakchoi plants under Cd stress. In Cd + ES + UR21–treated plants, the dry weight of shoot and root were increased by 61.54% and 72.73%, respectively. The chlorophyll a, chlorophyll b, and carotenoid content were increased by 52.19%, 42.95%, and 95.56% in Cd + ES + UR21–treated plants. Meanwhile, the H₂O₂ and MDA content were decreased while the SOD and POD activity were increased, and an increase of soluble protein level in pakchoi plants was observed under Cd + ES + UR21 treatment. Importantly, eggshell and UR21 alone or in combination induced a decline of Cd content in pakchoi plants, especially that Cd + ES + UR21 treatment decreased Cd content in shoot and root by 26.96% and 42.91%, respectively. Meanwhile, the soil urease and sucrase activities were enhanced. Generally, the combined application of ureolytic bacteria UR21 and eggshell exhibited better effects than applied them individually in terms of alleviating Cd toxicity in pakchoi plants. Our findings may give a unique perspective for an eco-friendly and sustainable strategy to remediate heavy metal–polluted soils.
اظهر المزيد [+] اقل [-]Lead (Pb)-resistant bacteria inhibit Pb accumulation in dill (Anethum graveolens L.) by improving biochemical, physiological, and antioxidant enzyme response of plants
2021
Rahbari, Akram | Fatemi, Hamideh | Esmaiel Pour, Behrooz | Rizwan, Muhammad | Soltani, Ali-Ashraf
The accumulation of heavy metal in the soil is a serious concern for sustainable food production due to their toxic effects on plants and other living things. The strategies are required on urgent bases for the management of metal-contaminated soils. Thus, the microbes from the genus Pseudomonas were characterized for different traits and lead (Pb)-resistant ability and their effects were assessed on growth, photosynthesis, antioxidant capacity, and Pb uptake by dill (Anethum graveolens L.). Furthermore, soil basal respiration and induced respiration in soil were also assessed under microbes and Pb stress. Among the tested three strains, Pseudomonas P159 and P150 were more tolerant to Pb stress than Pseudomonas P10, whereas P159 showed the highest values for phosphorus (P), siderophore, auxin, and hydrogen cyanide production. The bacterial inoculation increased the plant shoot dry weights, carbohydrates, proline, and chlorophyll contents under Pb stress. The catalase (CAT) and peroxidase (POD) activities of the plants were higher in bacterial-treated plants than control. The bacterial inoculation decreased Pb concentration in plants, and the response varied with the type of microbes. The bacterial strains enhanced the soil basal and induced respiration than respective Pb treatments alone. Overall, Pseudomonas P159 is potentially suitable for the remediation of Pb-contaminated soils. Graphical abstract
اظهر المزيد [+] اقل [-]Effect of Inoculation and Co-inoculation of Acinetobacter sp. RG30 and Pseudomonas putida GN04 on Growth, Fitness, and Copper Accumulation of Maize (Zea mays)
2014
Rojas-Tapias, Daniel Fernando | Bonilla, Ruth | Dussán, Jenny
Phytoremediation can be assisted by microorganisms, which promote plant growth and increase heavy metal availability in soil. In this study, we aimed at evaluating the effect of two plant growth-promoting bacteria (PGPB) on phytoextraction of copper (Cu) by maize. We chose the strains based on their ability to synthesize indole compounds, produce siderophores, solubilize phosphorus, and increase soil conductivity and extractable Cu in soil. Then, in glasshouse experiments, we assessed their ability to increase biomass, chlorophyll content, and Cu extraction by maize. Results showed that Acinetobacter sp. RG30 and Pseudomonas putida GN04 were overall the most active strains to synthesize indole, produce siderophores, and solubilize phosphorus, and hence selected for further studies. Also, both were able to significantly increase soil conductivity and release Cu from soil compared to control. Glasshouse experiments showed that Cu had a negative effect on plant growth, but inoculation with bacteria promoted plant growth and chlorophyll content in its presence (p < 0.05). Notably, the effect of inoculation on plant growth was larger on contaminated than on uncontaminated soil, which suggests an overall bacterial effect for alleviation of stress caused by Cu. Inoculation with RG30 or GN04 improved Cu extraction by maize (p < 0.05); interestingly, co-inoculation led to the highest accumulation (200 μg Cu/g plant dry weight). We conclude, therefore, that inoculation with RG30 and GN04 improves metal extraction by increasing plant growth, fitness, and availability of minerals in soil, which represents an important tool for the improvement of phytoextraction processes in polluted environments.
اظهر المزيد [+] اقل [-]Effect of Inoculation with Plant Growth-Promoting Bacteria on Growth and Copper Uptake by Sunflowers
2012
Rojas-Tapias, Daniel Fernando | Bonilla, Ruth Rebeca | Dussán, Jenny
The effect of plant growth-promoting bacteria inoculation on Helianthus annuus growth and copper (Cu) uptake was investigated. For this, the strains CC22, CC24, CC30, and CC33 previously isolated from heavy metal- and hydrocarbon-polluted soil were selected for study. These strains were characterized on the basis of their 16S rDNA sequences and identified as Pseudomonas putida CC22, Enterobacter sakazakii CC24, Acinetobacter sp. CC30, and Acinetobacter sp. CC33. Strains were able to synthesize indole, solubilize phosphorus, and produce siderophores in vitro, which are proper characteristics of plant growth-promoting (PGP) bacteria. Bacteria were also able to bioaccumulate Cu(II), and most of them could use aromatic hydrocarbons as a sole carbon source. Furthermore, Acinetobacter sp. CC33 exhibited the greatest extent of Cu(II) accumulation, and CC30 the widest range for degrading hydrocarbons. Acinetobacter sp. CC30 was selected for pot experiments on the basis of its plant growth-promoting properties. Inoculation with CC30 significantly increased the plant biomass (dry weight and length of root and shoot) and improved the photosynthetic pigment content in non- and Cu-contaminated soil (p < 0.05). Additionally, plant Cu uptake was improved by CC30 inoculation showing a significantly enhanced root Cu content (p < 0.05). Our findings evidenced that the strain CC30 protected the plant against the deleterious effect of Cu contamination and improved the Cu extraction by plant, hence concluding that its inoculation represents an alternative to improve phytoremediation process of heavy metals, particularly Cu, in contaminated environments.
اظهر المزيد [+] اقل [-]Production and Characterization of Siderophores and its Application in Arsenic Removal from Contaminated Soil
2007
Nair, Anupa | Juwarkar, Asha A. | Singh, Sanjeev K.
Siderophores are small molecular weight extracellular organic compounds secreted by microorganisms under iron-starved conditions, used by them to chelate and solubilize iron. Though they are specific ferric iron chelator, but is reported that they bind other metals also, such as divalent heavy metals and actinides because of potentially high metal-siderophore stability constants. Thus metal contaminant fate and transport in subsurface environment can be heavily influenced by siderophores. This approach can be successfully used in removing many toxic metals off the soil which poses a serious health threat. Our research focuses on the correlation between cell growth and siderophore production and chemical characterization of the siderophore type. Its also documents the development of an assay method for the screening of different metals for complexation with siderophores based on the Chrome Azurol S (CAS) assay. The present research aims at batch scale mobilization of arsenic from arsenic contaminated soils using siderophore produced by P. azotoformans and thus evaluating its efficiency as compared to Ethylene Diamine Tetra Acetic Acid (EDTA), Citric Acid (CA) for the same. FT-IR spectroscopic studies were carried out to determine the interaction between soil, arsenic and siderophore. Results have shown that the cell growth and siderophore production are inversely related. Characterization of siderophore produced by P. azotoformans has revealed that it is of mixed-type catecholate and hydroxamate. Siderophore was found to complex with heavy metals like Cadmium, Lead, Nickel, Arsenic (III, V), Aluminium, Magnesium Zinc, Copper, Cobalt, Strontium other than Iron. Five washings by siderophore, EDTA, CA removed almost 92.8%, 77.3%, 70.0% arsenic respectively as compared to only 33.8% removal by control. Washing of arsenic contaminated soil with tap water revealed that ≈ 65.8% of arsenic in contaminated soil is in freely available or weakly bound form. The IR spectra revealed that hydrogen bonding exists between siderophore, arsenic and soil. Encouraging results of arsenic removal by biomolecule-siderophore can lead to an emerging tool brimming with opportunities for environmental clean up.
اظهر المزيد [+] اقل [-]