خيارات البحث
النتائج 1 - 8 من 8
Life-cycle phases of a zinc- and cadmium-resistant ecotype of Silene vulgaris in risk assessment of polymetallic mine soils
2000
Ernst, W.H.O. | Nelissen, H.J.M.
Comparison of lead tolerance in Allium cepa with other plant species
1999
Wierzbicka, M. (Environmental Plant Pollution Laboratory, University of Warsaw, Krakowskie Przedmiescie 26/28, 00-927 Warsaw (Poland))
The adaptation of Silene vulgaris to growth on a calamine waste heap (S. Poland)
1998
Wierzbicka, M. | Panufnik, D. (Environmental Plant Pollution Laboratory, Department of Morphogenesis, Institute of Plant Experimental Biology, University of Warsaw, Krakowskie Przedmiescie 26/28, 00-927 Warsaw (Poland))
The Uptake of Copper by Aldama dentata: Ecophysiological Response, Its Modeling, and the Implication for Phytoremediation
2011
Dasgupta-Schubert, N. | Barrera, M. G. | Alvarado, C. J. | Castillo, O. S. | Zaragoza, E. M. | Alexander, S. | Landsberger, S. | Robinson, S.
Aldama dentata Llave & Lex. is a plant native to Latin America that exhibits metallicolous populations. Its ecophysiological (EP) response to Cu stress, administered as graded soil concentrations (Cs) of the fungicide copper(II) oxychloride, is examined in depth. Using a systems biology- and population dynamics-inspired approach, an r/K-driven model is proposed that satisfactorily explains the plant Cu concentration (Cp) versus Cs EP response curves for the root, shoot, and whole plant. A. dentata was found to be a Cu excluder (ME). The dual role of Cu as a nutrient and toxin at low and high concentrations, respectively, manifested as a parabolic variation of the foliar area where the toxicity appeared as a second-order effect. The power-law variance of biomass (Bp) with Cp expected from the universal allometric scaling law of biology was loosely followed and is discussed in terms of the mode of Cu uptake by the plant and Cu’s dual physiological role. Biometric growth indices reflected the impact of Cu on the photosynthetic energy harvest. The general applicability of the r/K-driven model was corroborated by its successful application to the published Cp–Cs data of the well-known Cu ME, Silene vulgaris. The r–K factors suggest a new quantitative manner of comparing the phytoavailability of the metal and the plant’s accumulation capability across soil types. A. dentata with high root Cp but low Bp diminution could potentially find use as a Cu phytostabilizer.
اظهر المزيد [+] اقل [-]Effect of Silene vulgaris and Heavy Metal Pollution on Soil Microbial Diversity in Long-Term Contaminated Soil
2018
Pacwa-Płociniczak, Magdalena | Płociniczak, Tomasz | Yu, Dan | Kurola, JukkaM. | Sinkkonen, Aki | Piotrowska-Seget, Zofia | Romantschuk, Martin
In this study, we analysed the impact of heavy metals and plant rhizodeposition on the structure of indigenous microbial communities in rhizosphere and bulk soil that had been exposed to heavy metals for more than 150 years. Samples of the rhizosphere of Silene vulgaris and non-rhizosphere soils 250 and 450 m from the source of emission that had different metal concentrations were collected for analyses. The results showed that soils were collected 250 m from the smelter had a higher number of Cd-resistant CFU compared with the samples that were collected from 450 m, but no significant differences were observed in the number of total and oligotrophic CFU or the equivalent cell numbers between rhizosphere and non-rhizosphere soils that were taken 250 and 450 m from the emitter. Unweighted pair group method with arithmetic mean (UPGMA) cluster analysis of the denaturing gradient gel electrophoresis (DGGE) profiles, as well as a cluster analysis that was generated on the phospholipid fatty acid (PLFA) profiles, showed that the bacterial community structure of rhizosphere soils depended more on the plant than on the distance and metal concentrations. The sequencing of the 16S rDNA fragments that were excised from the DGGE gel revealed representatives of the phyla Bacteroidetes, Acidobacteria, Gemmatimonadetes, Actinobacteria and Betaproteobacteria in the analysed soil with a predominance of the first three groups. The obtained results demonstrated that the presence of S. vulgaris did not affect the number of CFUs, except for those of Cd-resistant bacteria. However, the presence of S. vulgaris altered the soil bacterial community structure, regardless of the sampling site, which supported the thesis that plants have a higher impact on soil microbial community than metal contamination.
اظهر المزيد [+] اقل [-]Restoration of Vegetation in Relation to Soil Properties of Spoil Heap Heavily Contaminated with Heavy Metals
2018
Pająk, Marek | Błońska, Ewa | Szostak, Marta | Gąsiorek, Michał | Pietrzykowski, Marcin | Urban, Otmar | Derbis, Piotr
The main objectives of our study were to evaluate soil contamination on a zinc-lead spoil heap in the Upper Silesian Industrial Region in southern Poland using pollution indices, and to investigate the relation between soil properties and the natural succession of vegetation. Organic carbon and nitrogen, pH, soil texture, base cations, and heavy metal content were analyzed in soil samples at depths of 0–15 cm below the organic horizon over a regular grid of 14 sampling plots. The contents of Zn, Pb, and Cd exceeded by several times the acceptable thresholds. Measurements of soil enzyme activity were used to evaluate the progress of vegetation development in relation to soil chemical properties. The results indicate that heavy metals had a significant impact on soil enzyme activity and the development of vegetation cover. High contents of Pb and Cd reduced enzyme activity, while this activity increased with increasing amounts of soil organic matter. Further, the accumulative capacities of heavy metals in needles of Scots pine (Pinus sylvestris L.) and aboveground biomass of bladder campion (Silene vulgaris (Moench) Garcke) were examined. A high accumulation of Zn, Pb, and Cd in the aboveground tissues of S. vulgaris indicated an unusual tolerance of this species to heavy metals and the possibility of using this species in phytoremediation of post-industrial sites.
اظهر المزيد [+] اقل [-]Different genotypes of Silene vulgaris (Moench) Garcke grown on chromium-contaminated soils influence root organic acid composition and rhizosphere bacterial communities
2017
García-Gonzalo, P. | del Real, A. E Pradas | Lobo, M. C. | Pérez-Sanz, A.
Plant–microbe interactions are considered to be important processes determining the efficiency of phytoremediation of heavy metal-contaminated soils. However, relatively little is known about how these interactions are influenced by chromium (Cr) contamination. The effect of Cr stress on metal uptake, root organic acid composition, and rhizosphere bacterial communities was studied using two genotypes of the metallophyte Silene vulgaris, which have shown different tolerance to Cr(VI). The results indicated that root biomass and shoot biomass were not significantly influenced by Cr treatment, but metal uptake in shoots and roots was significantly impacted by the genotype. Principal component analyses (PCA) showed that variation in organic acids oxalic, citric, malic, formic, lactic, acetic, and succinic differed between genotypes. Changes in root organic acid contents in response to Cr revealed a significant increase of oxalic acid in genotype SV-21. The denaturing gradient gel electrophoresis (DGGE) cluster analysis showed that the community structure (determined by PCR-DGGE) was affected by plant genotype and, to a lesser extent, by Cr contamination, the first being the most influential factor shaping the rhizosphere microbiome. Under Cr pollution, a shift in the relative abundance of specific taxa was found and dominant phylotypes were identified as Variovorax in SV-21 and Chitinophaga niastensis, Pontibacter sp., and Ramlibacter sp. in SV-38. These results provided the basis for further studies aimed at the combined use of plants and soil microorganisms in the remediation of Cr-polluted soils.
اظهر المزيد [+] اقل [-]Role of the polycarboxylic compounds in the response of Silene vulgaris to chromium
2017
Pradas del Real, Ana E. | Silvan, Jose Manuel | de Pascual-Teresa, Sonia | Guerrero, Ana | García-Gonzalo, Pilar | Lobo, M Carmen | Pérez-Sanz, Araceli
This work aims to investigate the nature and the specific mechanisms by which polycarboxylic compounds participate in the tolerance of Silene vulgaris to Cr with special attention given to the rhizosphere system. This knowledge is important to use this species in the implementation of phytoremediation technologies in Cr-polluted soils. According to the results, chromium is chelated and mobilized by the citric and malic acids in plant tissues, while oxalic acid might participate in the reduction and chelation of Cr in the rhizosphere. At the applied doses, the response of both exudation rate and root exudate composition (total polyphenols and quercitin) seems to involve a rearrangement in the lignification of the plant cell wall to immobilize Cr. Quercetin-3-dirhamnosyl-galactoside and apiin (apigenin-7-O-apiosyl-glucoside) have been identified as the major polyphenols in the root exudates of S. vulgaris. The increments found in the apiin concentration in root exudates seem to be related to the protection against Cr toxicity by chelation of Cr or by free radical scavenging. Though earlier response is detected in plant tissues, results from this work together with previous studies in S. vulgaris indicate that exudation might be a regulated mechanism of protection under Cr exposition in S. vulgaris that may involve mainly Cr reduction and chelation.
اظهر المزيد [+] اقل [-]