خيارات البحث
النتائج 1 - 10 من 276
The experimental phytotoxicology of germanium in relation to silicon.
1990
Puerner N.J. | Siegel S.M. | Siegel B.Z.
Understanding aquaporin regulation defining silicon uptake and role in arsenic, antimony and germanium stress in pigeonpea (Cajanus cajan)
2022
Mandlik, Rushil | Singla, Pankaj | Kumawat, Surbhi | Khatri, Praveen | Ansari, Waquar | Singh, Anuradha | Sharma, Yogesh | Singh, Archana | Solanke, Amol | Nadaf, Altafhusain | Sonah, Humira | Deshmukh, Rupesh
Understanding of aquaporins (AQPs) facilitating the transport of water and many other small solutes including metalloids like silicon (Si) and arsenic (As) is important to develop stress tolerant cultivars. In the present study, 40 AQPs were identified in the genome of pigeonpea (Cajanus cajan), a pulse crop widely grown in semi-arid region and areas known to affected with heavy metals like As. Conserved domains, variation at NPA motifs, aromatic/arginine (ar/R) selectivity filters, and pore morphology defined here will be crucial in predicting solute specificity of pigeonpea AQPs. The study identified CcNIP2-1 as an AQP predicted to transporter Si (beneficial element) as well as As (hazardous element). Further Si quantification in different tissues showed about 1.66% Si in leaves which confirmed the predictions. Furthermore, scanning electron microscopy showed a higher level of Si accumulation in trichomes on the leaf surface. A significant alleviation in level of As, Sb and Ge stress was also observed when these heavy metals were supplemented with Si. Estimation of relative water content, H₂O₂, lipid peroxidation, proline, total chlorophyll content and other physiological parameters suggested Si derived stress tolerance. Extensive transcriptome profiling under different developmental stages from germination to senescence was performed to understand the tissue-specific regulation of different AQPs. For instance, high expression of TIP3s was observed only in reproductive tissues. Co-expression network developed using transcriptome data from 30 different conditions and tissues, showed interdependency of AQPs. Expression profiling of pigeonpea performed using real time PCR showed differential expression of AQPs after Si supplementation. The information generated about the phylogeny, distribution, molecular evolution, solute specificity, and gene expression dynamics in article will be helpful to better understand the AQP transport system in pigeonpea and other legumes.
اظهر المزيد [+] اقل [-]Accumulation and partitioning of toxic trace metal(loid)s in phytoliths of wheat grown in a multi-element contaminated soil
2022
Liu, Linan | Song, Zhaoliang | Li, Qiang | Ellam, Rob M. | Tang, Jingchun | Wang, Yangyang | Sarkar, Binoy | Wang, Hailong
Cropland contamination by toxic trace metal (loid)s (TTMs) has attracted increasing attention due to the serious consequential threat to crop quality and human health. Mitigation of plant TTM stress by silica amendment has been proposed recently. However, the relationship between the siliceous structure of phytoliths and TTMs in plants, and the environmental implications of phytolith-occluded trace metal (loid)s (PhytTMs) remain unclear. This study assessed the accumulation of five metal (loid)s, including lead (Pb), zinc (Zn), cadmium (Cd), copper (Cu) and arsenic (As), in the organic tissues and phytoliths of wheat grown in a mixed-TTM contaminated soil under both lightly and heavily contaminated conditions. The results show that the concentrations of plant TTMs and PhytTMs were significantly (p < 0.05) positively correlated, and higher in heavily contaminated wheats than those in lightly contaminated ones. The bio-enrichment factors between phytoliths and organic tissues were higher for As (1.83), Pb (0.27) and Zn (0.30) than for Cd (0.03) and Cu (0.14), implying that As, Pb and Zn were more readily co-precipitated with silicon (Si) in phytolith structures than Cd and Cu. Network analysis of the relationship between soil and plant elements with PhytTMs showed that severe contamination could impact the homeostasis of elements in plants by altering the translocation of TTMs between soils, plants, and phytoliths. The accumulation of TTMs in phytoliths was affected by the capacity of Si deposition in tissues and chelation of TTMs with silica, which could impact the role of PhytTMs in global biogeochemical TTM cycles.
اظهر المزيد [+] اقل [-]Sodium hydrosulfite together with silicon detoxifies arsenic toxicity in tomato plants by modulating the AsA-GSH cycle
2022
Kaya, Cengiz | Ashraf, Muhammad
The main intent of the current research was to appraise if combined application of hydrogen sulfide (H₂S, 0.2 mM) and silicon (Si 2.0 mM) could improve tolerance of tomato plants to arsenic (As as sodium hydrogen arsenate heptahydrate, 0.2 mM) stress. Plant growth, chlorophylls (Chl), PSII maximum efficiency (Fv/Fm), H₂S concentration and L-cysteine desulfhydrase activity were found to be suppressed, but leaf and root As, leaf proline content, phytochelatins, malondialdehyde (MDA) and H₂O₂ as well as the activity of lipoxygenase (LOX) increased under As stress. H₂S and Si supplied together or alone enhanced the concentrations of key antioxidant biomolecules such as ascorbic acid, and reduced glutathione and the activities of key antioxidant system enzymes including catalase (CAT), superoxide dismutase (SOD), dehydroascorbate reductase (DHAR), glutathione reductase (GR), and glutathione S-transferase (GST). In comparison with individual application of H₂S or Si, the joint supplementation of both had better effect in improving growth and key biochemical processes, and reducing tissue As content, suggesting a putative collaborative role of both molecules in improving tolerance to As-toxicity in tomato plants.
اظهر المزيد [+] اقل [-]An iron-biochar composite from co-pyrolysis of incinerated sewage sludge ash and peanut shell for arsenic removal: Role of silica
2022
Wang, Qiming | Li, Jiang-shan | Poon, C. S. (Chi-sun)
Modification of biochar by low-cost iron sources has gained increasing attention to improve pollutants removal performance and reduce production costs compared to conventional chemical modifications. While such iron sources generally have complex compositions, their effects on properties of the iron-biochar composite are not well investigated. This study produced an iron-biochar (RBC) composite from co-pyrolysis of incinerated sewage sludge ash (ISSA) and peanut shell, and examined the role of silica with widespread existence in ISSA and other low-cost iron sources on properties of the iron-biochar composite relevant to As(III)/As(V) removal. Silica was found to react with iron during the pyrolysis process at 850 °C and formed iron silicon at the expense of producing zero valent iron and Fe₃O₄ which resulted in a poorer removal efficacy for As(III) and As(V) compared to the iron-biochar (FBC) made from pure Fe₂O₃ and peanut shell. Moreover, a high leaching of reactive silica from RBC was observed which affected the formation of corrosion products of ZVI and competed with arsenic for active adsorption sites. Despite this, RBC still exhibited a maximum adsorption capacity of 17.44 and 57.56 mg/g towards As(III) and As(V) respectively at pH 3.0. Overall, this study provides an interesting insight into upcycling ISSA into useful media for sorptive removal of arsenic from aqueous solutions.
اظهر المزيد [+] اقل [-]Effect of soil sulfamethoxazole on strawberry (Fragaria ananassa): Growth, health risks and silicon mitigation
2021
Lv, Yao | Li, Yanyan | Liu, Xiaohui | Xu, Kun
The negative impact of antibiotic pollution on the agricultural system and human health is a hot issue in the world. However, little information is available on the antibiotics toxicity mechanism and the role of silicon (Si) to alleviate the antibiotics toxicity. In this study, strawberry (Fragaria ananassa) showed excitatory response to low-dose SMZ (1 mg L⁻¹), but strawberry root and photosynthetic efficiency were damaged under high level. When SMZ level exceeded 10 mg L⁻¹, H₂0₂, O₂⁻, MDA and relative conductivity increased, while SOD and CAT activities first increased and then decreased. SMZ accumulated more in roots and fruits, but less in stems, and the accumulation increased with the increase of SMZ-dose. Under 1 mg L⁻¹ SMZ, the SMZ accumulation in fruits was 110.54 μg kg⁻¹, which exceeded the maximum residue limit. SMZ can induce the expression of sul1, sul2 and intI1, and intI1 had the highest abundance. Exogenous application of Si alleviated the toxicity of SMZ, which is mainly related to the degradation of SMZ in soil and the reduction of SMZ absorption by strawberry. In addition, Si relieved root damage, promoted the increase of photosynthetic efficiency, and improved the antioxidant system to resist SMZ toxicity.
اظهر المزيد [+] اقل [-]Recycling of silicon from silicon cutting waste by Al-Si alloying in cryolite media and its mechanism analysis
2020
Wei, Donghui | Kong, Jian | Gao, Shuaibo | Zhou, Shibo | Jin, Xing | Jiang, Shengnan | Zhuang, Yanxin | Du, Xinghong | Xing, Pengfei
More than 40% of the crystalline silicon has been wasted as silicon cutting waste (SCW) during the wafer production process. This waste not only leads to resource wastage but also causes environmental burden. In this paper, SCW produced by the diamond-wire sawing process was recycled by Al-Si alloying process. Cryolite was introduced to the reaction system to dissolve the SiO₂ layer existed on the surface of the Si particles in SCW. Alloys with 12.02 wt% of Si were prepared and the mechanism of the alloying process was investigated in detail. The Si-Al-cryolite system and SiO₂-Al-cryolite system were studied individually to analyze the reaction process and transferring behavior of Si and SiO₂ in SCW. The SiO₂ shell was firstly transformed into Si-O-F ions. Then the Si-O-F ions diffused to the reaction interface by the effect of the concentration gradient and were reduced to Si by the aluminothermic reduction reaction: 4Al (l) + 3SiO₂ (dissolved in the melt) = 3Si (Al)+ 2Al₂O₃ (dissolved in the melt). Then the internal Si particles were released into cryolite after the dissolution of SiO₂ and transferred to the reaction interface by the effect of gravity. The influences of the mass ratio of Al/SCW and agitation modes on the Si content of the alloys and the Si recovery ratio in SCW were investigated. With the increase of the mass ratio of Al/SCW from 2.2 to 6.5, the Si recovery ratio in SCW increased from 44.08% to 69.05%, but the silicon content of the alloys decreased from 16.06 wt% to 8.83 wt%. Agitation can effectively improve the smelting effect during smelting by which the silicon content of the alloys and the Si recovery ratio in SCW increased from 12.02 wt% and 64.25% to 13.17 wt% and 69.46%, respectively.
اظهر المزيد [+] اقل [-]Mechanisms underlying silicon-dependent metal tolerance in the marine diatom Phaeodactylum tricornutum
2020
Zhou, Beibei | Ma, Jie | Chen, Fengyuan | Zou, Yue | Wei, Yang | Zhong, Huan | Pan, Ke
Anthropogenic activities have significantly changed the stoichiometry and concentrations of nutrients in coastal waters. Silicon (Si) has become a potential limiting nutrient due to disproportionate nitrogen, phosphorus, and silicate inputs into these areas. The disrupted nutrient ratios can cause changes to metal sensitivity and accumulation in marine diatoms, an important group of eukaryotic phytoplankton that requires silicon for growth. In this study, we examined the effects of Si availability on the metal sensitivity in the diatom P. tricornutum. We found that Si starvation dramatically compromised its cadmium, copper, and lead tolerances. Interestingly, multiple lines of evidence indicated that Si-enriched cells had higher metal adsorption and influx rates than Si-starved cells. Yet Si-enriched cells also had a greater ability to respond to and counteract metal toxicity via elevated expression of membrane and vacuolar metal transporters and greater antioxidant activities which scavenge reactive oxygen species created by metal stress.
اظهر المزيد [+] اقل [-]Associations of annual ambient PM2.5 components with DNAm PhenoAge acceleration in elderly men: The Normative Aging Study
2020
Wang, Cuicui | Koutrakis, Petros | Gao, Xu | Baccarelli, Andrea | Schwartz, Joel
Current studies indicate that long-term exposure to ambient fine particulate matter (PM₂.₅) is related with global mortality, yet no studies have explored relationships of PM₂.₅ and its species with DNAm PhenoAge acceleration (DNAmPhenoAccel), a new epigenetic biomarker of phenotypic age. We identified which PM₂.₅ species had association with DNAmPhenoAccel in a one-year exposure window in a longitudinal cohort. We collected whole blood samples from 683 elderly men in the Normative Aging Study between 1999 and 2013 (n = 1254 visits). DNAm PhenoAge was calculated using 513 CpGs retrieved from the Illumina Infinium HumanMethylation450 BeadChip. Daily concentrations of PM₂.₅ species were measured at a fixed air-quality monitoring site and one-year moving averages were computed. Linear mixed-effect (LME) regression and Bayesian kernel machine (BKM) regression were used to estimate the associations. The covariates included chronological age, body mass index (BMI), cigarette pack years, smoking status, estimated cell types, batch effects etc. Benjamini-Hochberg false discovery rate at a 5% false positive threshold was used to adjust for multiple comparison. During the study period, the mean DNAm PhenoAge and chronological age in our subjects were 68 and 73 years old, respectively. Using LME model, only lead and calcium were significantly associated with DNAmPhenoAccel. For example, an interquartile range (IQR, 0.0011 μg/m³) increase in lead was associated with a 1.29-year [95% confidence interval (CI): 0.47, 2.11] increase in DNAmPhenoAccel. Using BKM model, we selected PM₂.₅, lead, and silicon to be predictors for DNAmPhenoAccel. A subsequent LME model showed that only lead had significant effect on DNAmPhenoAccel: 1.45-year (95% CI: 0.46, 2.46) increase in DNAmPhenoAccel following an IQR increase in one-year lead. This is the first study that investigates long-term effects of PM₂.₅ components on DNAmPhenoAccel. The results demonstrate that lead and calcium contained in PM₂.₅ was robustly associated with DNAmPhenoAccel.
اظهر المزيد [+] اقل [-]Nutrient burial and environmental changes in the Yangtze Delta in response to recent river basin human activities
2019
Liu, Yueying | Deng, Bing | Du, Jinzhou | Zhang, Guosen | Hou, Lijun
High resolution sediment records in the Yangtze Delta front were constructed to reveal recent environmental changes in response to river basin human activities. Increases in nutrient and organic C influxes that began in the 1950s, together with elevated primary productivity and increased chemical fertilizer application, suggested a shift toward anthropogenic-predominated environmental changes during this period. The depletion of total organic C (TOC), total N (TN), and biogenic Si (BSi), along with the decline in sedimentation rate and coarsening of sediment coincided with the development of hydrological engineering in the river basin from the 1980s. Reservoir Si retention substantially altered river mouth primary productivity community composition from diatoms to non-diatoms, thereby changing the BSi/TOC molar ratio in the sediment profile. Estimation of biogenic component burial fluxes was conducted to assess the variation and potential impacts. A recent dramatic decline in biogenic component burial in the delta area suggested a low nutrient removal efficiency in this region, due to the decrease in sediment discharge. Consequently, more nutrients have been further transported to the inner shelf and open waters instead of being buried in the delta sediment, thereby increasing the environmental pressure in the Yangtze Delta and adjoining coastal area.
اظهر المزيد [+] اقل [-]