خيارات البحث
النتائج 1 - 10 من 56
Metagenomics highlights the impact of climate and human activities on antibiotic resistance genes in China's estuaries
2022
Zheng, Dongsheng | Yin, Guoyu | Liu, Min | Hou, Lijun | Yang, Yi | Liu, Xinran | Jiang, Yinghui | Chen, Cheng | Wu, Han
Estuarine environments faced with contaminations from coastal zones and the inland are vital sinks of antibiotic resistance genes (ARGs). However, little is known about the temporal-spatial pattern of ARGs and its predominant constraints in estuarine environments. Here, we leveraged metagenomics to investigate ARG profiles from 16 China's estuaries across 6 climate zones in dry and wet seasons, and disentangled their relationships with environmental constraints. Our results revealed that ARG abundance, richness, and diversity in dry season were higher than those in wet season, and ARG abundance exhibited an increasing trend with latitude. The prevalence of ARGs was significantly driven by human activities, mobile gene elements, microbial communities, antibiotic residuals, physicochemical properties, and climatic variables. Among which, climatic variables and human activities ranked the most important factors, contributing 44% and 36% of the total variance of observed ARGs, respectively. The most important climatic variable shaping ARGs is temperature, where increasing temperature is associated with decreased ARGs. Our results highlight that the prevalence of ARGs in estuarine environments would be co-driven by anthropogenic activities and climate, and suggest the dynamics of ARGs under future changing climate and socioeconomic development.
اظهر المزيد [+] اقل [-]Assessment on the source of geochemical anomalies in the sediments of the Changjiang river (China), using a modified enrichment factor based on multivariate statistical analyses
2022
Dominech, Salvatore | Albanese, Stefano | Guarino, Annalise | Yang, Shouye
Rivers can be sinks for potential toxic elements (PTEs) inputted in their systems by both natural and anthropic processes. Many indices have been proposed to assess the contamination degree of sediments and the environmental conditions of surficial water bodies. Above all, enrichment factor (EF) is the most used tool, but also it is the most debated for its limitations. The need for a reference element and for a background/baseline composition makes the EF method dependent on the researcher's expertise, implying that its repeatability may not be granted. Starting from the awareness that geochemical processes, bringing to compositional changes in the environmental matrices, involve multiple elements rather than individual variables, we developed a modified EF (mEF) based on the use of elemental associations. Different multivariate statistical methods (i.e. Robust Principal Component Analysis and Fuzzy Clustering), in a compositional data analysis (CoDA) perspective, were used to set all the terms of the mEF. The mEF was applied to 101 sediment samples collected from a 2 m-long core, covering a sedimentation period of about 150 years (1850–2007), located in the lower Changjiang River (China). The method resulted effective in recognizing most of the signals proceeding from the main natural and anthropogenic events which affected the lower river basin in the considered timespan. The largest geochemical variations recorded fit well the flooding events occurred; besides, the effects produced on the system by the recent socio-economic development (following the end of the civil war in 1949 and the beginning of economic reforms in 1978) and the start-up of the Three Gorges Dam (the world's largest power station since 2012) were also intercepted. The proposed method represents a step forward to enhance the effectiveness of the EF in discriminating geochemical anomalies that may be significant to assess the human historical impact on the environment.
اظهر المزيد [+] اقل [-]Morocco's coastal aquifers: Recent observations, evolution and perspectives towards sustainability
2022
Ez-zaouy, Yassine | Bouchaou, Lhoussaine | Saad, Aicha | Hssaisoune, Mohammed | Brouziyne, Youssef | Dhiba, Driss | Chehbouni, Abdelghani
During the last decades, the coastal areas of Morocco have witnessed an intense socioeconomic development associated with a continuous population growth and urban extension. This has led to an overexploitation of coastal aquifers leading to a degradation of their water quality. In order to obtain large scale overview on the quality status of Morocco's coastal aquifers (MCA) to assist national water managers to make informed decisions, a comprehensive scrutinization of the MCA against common indicators and using unified methods is essential. In this study, databases from thirteen MCA were analyzed, using multivariate statistical approaches and graphical methods in order to investigate the degree of mineralization in each aquifer and to identify the main salinization processes prevailing in groundwater. The results showed that the dominant groundwater types are Na–Cl, Ca–Mg–Cl, Ca–Mg–SO₄, Ca–Mg–HCO₃ and Ca–HCO₃–Cl. The Gibbs diagram and the seawater contribution (0–37%) indicate that the mineralization is mainly due to the seawater intrusion and water-rock interaction. The salinity degree diagram illustrates that almost all groundwater samples are located in the moderate to very saline zone, indicating that MCA are recharged by water from variable sources. The groundwater quality assessment shows a deterioration, particularly by seawater intrusion and significant nitrate pollution. The temporal evolution confirm that the MCA are influenced by seawater namely in the Atlantic part. The Wilcox and USSL diagram indicate that the majority of sampled water are unsuitable for irrigation uses. In addition, and by referring to the WHO and the Moroccan standards for water potability, large number of samples from the groundwaters of the MCA is not fully adequate for drinking purposes. A set of management actions (e,g., artificial recharge) are proposed in order to mitigate the effect of groundwater overexploitation and seawater intrusion to ensure the sustainability of MCA.
اظهر المزيد [+] اقل [-]Temporal dynamics of urban heat island correlated with the socio-economic development over the past half-century in Seoul, Korea
2019
Hong, Je-Woo | Hong, Jinkyu | Kwon, Eilhann E. | Yoon, D.K.
Urban heat island (UHI), an iconic consequence of anthropogenic activities and climate condition, affects air pollution, energy use, and health. Therefore, better understanding of the temporal dynamics of UHI is required for sustainable urban planning to mitigate air pollution under a changing climate. Here, we present the evolution of UHI intensity (UHIi) and its controlling factors in the Seoul metropolitan area, Korea, over the last 56 years (1962–2017), which has experienced unique compressed economic growth and urban transformation under monsoon climate. The analysis demonstrated an inverted U-shape long-term variation of UHIi with the progress of urban transformation and economic climate which has not been reported in Asian cities before. Meanwhile, short-term variations in UHIi are related to both diurnal temperature range and duration after rainfall event unlike previous studies, and the UHIi was exacerbated by heat waves. Our findings suggest that the UHIi will exhibit different temporal dynamics with future changes in the monsoon climate, and heat waves in the urban area will be reinforced if current rapid urbanization continues without a shift toward sustainable and equitable development. Asian cities that are likely to face the similar urbanization trajectory and the implications are that urban (re)development strategy considers changes in rainfall magnitude and timing due to monsoon system variation under changing climate and plans to mitigate synergy between heat wave and UHI in this area.
اظهر المزيد [+] اقل [-]Study of the influencing factors of the blood levels of toxic elements in Africans from 16 countries
2017
Henríquez-Hernández, Luis Alberto | Luzardo, Octavio P. | Boada, Luis D. | Carranza, Cristina | Pérez Arellano, José Luis | González-Antuña, Ana | Almeida-González, Maira | Barry-Rodríguez, Carlos | Zumbado, Manuel | Camacho, Maria
Africa's economy is growing faster than any other continent and it has been estimated that the middle class in Africa now exceeds 350 million people. This has meant a parallel increase in the importation of consumer goods and in the implementation of communication and information technologies (ICT), but also in the generation of large quantities of e-waste. However, inadequate infrastructure development remains a major constraint to the continent's economic growth and these highly toxic residues are not always adequately managed. Few studies have been conducted to date assessing the possible association between socioeconomic development factors, including e-waste generation, and blood levels of inorganic elements in African population. To disclose the role of geographical, anthropogenic, and socioeconomic development determinants on the blood levels of Ag, Al, As, Be, Cd, Co, Cr, Hg, Ni, Pb, Sb, and V —all of them frequently found in e-waste—, an immigrant population-based study was made including a total of 245 subjects from 16 countries recently arrived to the Canary Islands (Spain). Women presented higher levels of blood elements than men, and Northern Africans (Moroccans) were the most contaminated. People from low-income countries exhibited significantly lower blood levels of inorganic elements than those from middle-income countries. We found a significant association between the use of motor vehicles and the implementation of information and communication technologies (ICT) and the level of contamination. Immigrants from the countries with a high volume of imports of second-hand electronic equipment, telephone and internet use had higher levels of inorganic elements. In general terms, the higher level of economic development the higher the blood levels of inorganic pollutants, suggesting that the economic development of Africa, in parallel to e-waste generation and the existence of informal recycling sites, have directly affected the level of contamination of the population of the continent.
اظهر المزيد [+] اقل [-]Modern lake sedimentary record of PAHs and OCPs in a typical karst wetland, south China: Response to human activities and environmental changes
2021
Cheng, Cheng | Hu, Tianpeng | Liu, Weijie | Mao, Yao | Shi, Mingming | Xu, An | Su, Yewang | Li, Xingyu | Xing, Xinli | Qi, Shihua
The sedimentary history of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) over the past 140 years in a lake sediment core from Huixian karst wetland was reconstructed. The total PAHs and OCPs concentrations ranged from 40.0 to 210 ng g⁻¹ and 0.98 to 31.4 ng g⁻¹, respectively. The vertical distribution of PAHs and OCPs in different stages was great consistent with the history of regional socio-economic development and the usage of OCPs. As the indicators of socio-economic development, gross domestic product (GDP), population, energy consumption, highway mileage, and private vehicles correlated with the PAHs concentrations, indicating the impact of human activities on PAHs levels. The PAHs and OCPs concentrations were also affected by environmental changes in the wetland, as reconstructed by total organic carbon (TOC), sand, silt, clay, quartz, and calcite in sediments. Redundancy analysis (RDA) results showed TOC was the dominant factor to explain the concentrations of PAHs and OCPs with the explanation of 86.7% and 43.5%, respectively. In addition, TOC content had significantly positive correlation with PAHs (0.96, p < 0.01) and OCPs (0.78, p < 0.01). In particular, the significantly positive correlation (p < 0.05) between calcite and PAHs and OCPs inferred that karstification might play an important role in the migration of PAHs and OCPs in the karst area. Therefore, the lake in Huixian wetland tended to be a sink more than a source of PAHs and OCPs influenced by the increasing TOC content and karstification under climate warming.
اظهر المزيد [+] اقل [-]Gaseous and particulate pollutants in Lhasa, Tibet during 2013–2017: Spatial variability, temporal variations and implications
2019
Yin, Xiufeng | de Foy, Benjamin | Wu, Kunpeng | Feng, Chuan | Kang, Shichang | Zhang, Qianggong
In recent decades, most big cities in China have experienced severe air pollution accompanied by rapid economic and social development. Analysis of measurements of air pollutants form a fundamental basis for understanding the characteristics of air pollution and are important references for policy-making. In this study, five-year measurements of air pollutants at 6 sites in Lhasa, a typical high altitude big city in southwestern China, were analyzed from January 2013 to December 2017. Air pollutants at all the 6 sites in Lhasa generally displayed similar patterns of both diurnal and monthly variations, indicating the mixed atmospheric environment and the overall effect of the meteorological conditions in the city. Spatially, the air pollutant concentrations at the 6 sites were generally characterized by high concentrations of SO₂, NO₂, CO, PM₁₀ and PM₂.₅ at urban sites and high O₃ concentrations at suburban sites. In comparison with other provincial capital cities in China, Lhasa has low concentrations of air pollutants, except for O₃, and thus, better air quality. Although Lhasa has experienced rapid urbanization and economic development, air pollution conditions have remained rather stable and even decreased slightly in term of particular air pollutants. We suggested that the relatively isolated location, low air pollutant emissions associated with its industrial structure and renewable energy consumption, and effective air pollution control measures, collectively contributed to the synchronous improvement of the economy and air quality in Lhasa. Such “Lhasa pattern” may serve as a positive example for other regional hub cities in China and beyond that experience socioeconomic development and simultaneously seek to improve air quality.
اظهر المزيد [+] اقل [-]δ15N and nutrient stoichiometry of water, aquatic organisms and environmental implications in Taihu lake, China
2018
Tao, Yu | Dan, Dai | Kun, Lei | Chengda, He | Haibing, Cong | Guo, Fu | Qiujin, Xu | Fuhong, Sun | Fengchang, Wu
Nitrogen pollution has become a worldwide problem and the source identification is important for the development of pertinent control measures. In this study, isotope end members (rain, nitrogen fertilizer, untreated/treated sewage), and samples (river water discharging to Taihu lake, lake water, aquatic organisms of different trophic levels) were taken during 2010–2015 to examine their δ15N values and nutrient stoichiometry. Results indicated that phytoplankton (primary producers), which directly take up and incorporate N from the lake water, had a similar δ15N value (14.1‰ ± 3.2) to the end member of treated sewage (14.0‰ ± 7.5), and the most frequently observed δ15N value in the lake water was 8–12‰, both indicating the dominant impact of the sewage discharge. Relationship analysis between N isotope value of nitrate and nitrate concentration indicated that different N cycling existed between the algae-dominated northwest lake (NW) and the macrophyte-dominated southeast lake (SE), which is a result of both impacts of river inputs and denitrification. Our nutrient stoichiometry analysis showed that the lake water had a significantly higher N:P ratio than that of algae (p < 0.05), suggesting that N is available in excess relative to the amount demanded by the algae. The long-term trend of the socio-economic development in the watershed further confirmed that the rapid population increase and urbanization have resulted in a great change in the N loading and source proportion. We suggest that although P control is necessary in terms of eutrophication control, N pollution control is urgent for the water quality and ecological recovery for Taihu lake.
اظهر المزيد [+] اقل [-]Historical deposition of PAHs in mud depocenters from the Southwestern Atlantic continental shelf: The influence of socio-economic development and coal consumption in the last century
2021
Timoszczuk, Cristian Taboada | dos Santos, Felipe Rodrigues | Araújo, Lígia Dias | Taniguchi, Satie | Lourenço, Rafael André | Mahiques, Michel Michaelovitch de | de Lima Ferreira, Paulo Alves | Lopes Figueira, Rubens Cesar | Neves, Patricia Andrade | Prates, Denise | Bícego, Márcia Caruso
Polycyclic aromatic hydrocarbon (PAH) concentrations were determined in four dated sediment cores collected in mud depocenters of the southern Brazilian continental shelf. Core dating results covered the interval between 1925 and 2017. The total PAH concentrations (ΣPAHs) ranged from 44.69 ng g⁻¹ to 305.43 ng g⁻¹ and were similar between the analysed cores. Fine-grained sediments and total organic carbon (TOC) results did not correlate with the ΣPAHs, indicating that the variations in PAH concentrations are mostly related to variations in sources and emissions. PAH source appointment indicated a high input of a natural compound (perylene) and the predominance of anthropogenic PAHs from coal, biomass, and fuel combustion. Alkylated PAHs presented high contributions throughout all cores. The historical deposition of PAHs was associated with different periods of the socio-economic and industrial development of near coastal cities and reflected very well the history of coal production and consumption in the southern region of Brazil. The low levels of ΣPAHs before 1945 in all analysed cores may be related to the beginning of the industrialization process and the lower urbanization degree in the region. Between 1945 and 1965, the gradual ΣPAHs increase reflects the establishment and enlargement of the southern Brazilian industrial sector. The interval between 1965 and 1990 corresponded to the highest ΣPAHs in three of the four analysed cores. After 1990, a relative decrease in the ΣPAHs was observed in most cores and may be related the multiple cuts of incentives to the industrial usage of coal, as well as to Brazil's efforts in environmental regulation for coal extraction and consumption.
اظهر المزيد [+] اقل [-]Geospatial assessment of oil spill pollution in the Niger Delta of Nigeria: An evidence-based evaluation of causes and potential remedies
2020
Akinwumiju, Akinola S. | Adelodun, Adedeji A. | Ogundeji, Seyi E.
Based on the archival data on oil facilities, oil spill incidents, and environmental conditions, we researched the plausible causes of oil spill disasters in the Niger Delta of Nigeria between 2006 and 2019. The data were analyzed for geospatial and statistical patterns, using ArcGIS and R programming platforms, respectively. A fuzzy logic algorithm was employed to generate three oil spill disaster models (hazard, vulnerability, and risk). Ordinary Least Square algorithm was adopted to model the relationships between oil spill and two sets of predictor variables: oil facilities (oil well, flow station, and pipeline) and disaster models. We found that, during the 23 years, the Niger Delta experienced 7940 oil spill incidents, of which 67% occurred onshore. A total of 4,950, 501, 855 episodes were attributed to sabotage, corrosion, and equipment failure, with 87%, 62%, and 45% occurring onshore, respectively. Besides, 81% of the 5320 onshore oil spill cases were attributed to sabotage, while corrosion and equipment failure accounted for mere 6% and 7% of the incidents, respectively. The estimated average risk index (R = 0.20) shows that the risk of an oil spill disaster in the Niger Delta is low. Whereas, 5% of the region is characterized by a high risk of oil spill disaster. Furthermore, the regression model infers that the oil spillages exhibit a positive relationship with disaster models and oil facilities at α = 0.10. However, only 16% of the incidents were explained by disaster models, while the oil facilities account for 23% of the total cases, indicating the influence of other factors. To avert further socio-environmental damage in the Niger-Delta, oil theft and sabotage should be curbed, polluted areas are remediated, and an all-inclusive socio-economic development is prioritized.
اظهر المزيد [+] اقل [-]