خيارات البحث
النتائج 1 - 6 من 6
Biochar significantly reduced fumigant emissions and benefited germination and plant growth under field conditions
2022
Wang, Qiuxia | Gao, Suduan | Wang, Dong | Cao, Aocheng
Soil fumigation continues to play an important role in soil disinfection, but tools to significantly reduce emissions while providing environmental benefits (e.g., biochar) are lacking. The objective of this study was to determine the effects of biochar products on fumigant 1,3-dichloropropene (1,3-D) and chloropicrin (CP) emissions, their distribution and persistence in soil, nematode control, and potential toxicity to plants in a field trial. Treatments included three biochar products [two derived from almond shells (ASB) at either 550 or 900 °C pyrolysis temperature and one from coconut shells (CSB) at 550 °C] at 30 and 60 t ha⁻¹, a surface covering with a low permeability film (TIF), and no surface covering (control). A mixture of 1,3-D (∼65%) and CP (∼35%) was injected to ∼60 cm soil depth at a combined rate of 640 kg ha⁻¹. All biochar treatments significantly reduced emissions by 38–100% compared to the control. The ASB (900 °C) at both rates reduced emissions as effectively as the TIF (by 99–100%). Both fumigant emission reduction and residue in surface soil were positively correlated with biochar's adsorption capacity while cucumber germination rate and dry biomass were negatively correlated with residual fumigant concentrations in surface soil. This research demonstrated the potential and benefits of using biochar produced from local orchard feedstocks to control fumigant emissions. Additional research is needed to maximize the benefits of biochar on fumigant emission reductions without impacting plant growth.
اظهر المزيد [+] اقل [-]Bio-activation of soil with beneficial microbes after soil fumigation reduces soil-borne pathogens and increases tomato yield
2021
Cheng, Hongyan | Zhang, Daqi | Ren, Lirui | Song, Zhaoxin | Li, Qingjie | Wu, Jiajia | Fang, Wensheng | Huang, Bin | Yan, Dongdong | Li, Yuan | Wang, Qiuxia | Cao, Aocheng
Soil-borne diseases have become increasingly problematic for farmers producing crops intensively under protected agriculture. Although soil fumigants are convenient and effective for minimizing the impact of soil-borne disease, they are most often detrimental to beneficial soil microorganisms. Previous research showed that bio-activation of soil using biological control agents present in biofertilizers or organic fertilizers offered promise as a strategy for controlling soil-borne pathogens when the soil was bio-activated after fumigation. Our research sought to determine how bio-activation can selectively inhibit pathogens while promoting the recovery of beneficial microbes. We monitored changes in the soil’s physicochemical properties, its microbial community and reductions in soil-borne pathogens. We found that the population density of Fusarium and Phytophthora were significantly reduced and tomato yield was significantly increased when the soil was bio-activated. Soil pH and soil catalase activity were significantly increased, and the soil’s microbial community structure was changed, which may have enhanced the soil’s ability to reduce Fusarium and Phytophthora. Our results showed that soil microbial diversity and relative abundance of beneficial microorganisms (such as Sphingomonas, Bacillus, Mortierella and Trichoderma) increased shortly after bio-activation of the soil, and were significantly and positively correlated with pathogen suppression. The reduction in pathogens may have been due to a combination of fumigation-fertilizer that reduced pathogens directly, or the indirect effect of an optimized soil microbiome that improved the soil’s non-biological factors (such as soil pH, fertility structure), enhanced the soil’s functional properties and increased tomato yield.
اظهر المزيد [+] اقل [-]Fresh chicken manure fumigation reduces the inhibition time of chloropicrin on soil bacteria and fungi and increases beneficial microorganisms
2021
Zhang, Daqi | Cheng, Hongyan | Hao, Baoqiang | Li, Qingjie | Wu, Jiajia | Zhang, Yi | Fang, Wensheng | Yan, Dongdong | Li, Yuan | Wang, Qiuxia | Jin, Xi | He, Lin | Cao, Aocheng
Chloropicrin (CP) controls soil-borne plant diseases caused by pathogenic microbes, increases crop yield, but has a long-term inhibitory effect on beneficial soil microorganisms. Therefore, we evaluated the effects of biofumigation material fresh chicken manure (FCM) on soil microorganisms, and the duration of those effects in this experiment. Our results showed that in the laboratory, FCM significantly increased substrate-induced respiration (SIR) of soil microorganisms by 2.2–3.2 times at 80 d compared to the control, however, CP significantly inhibited the SIR of soil microorganisms. FCM and CP increased NH4+-N concentration within 40 days which then returned to the control level. FCM increased NO3--N by 2.82–5.78 times by 80 days, compared with the control, while the concentration of NO3--N in the CP treatment was not significantly different from the control at the 80 day. Although in the laboratory FCM inhibited the relative abundance of 16 S rRNA and the nitrogen cycle functional genes AOA amoA, AOB amoA, nirK and nosZ over a 40-day period, the taxonomic diversity of soil bacteria and fungi in the FCM treatment were restored to unfumigated level within 90 days in the field. However, CP treatment has a strong inhibitory effect on soil microorganisms after 90 days. Importantly, the relative abundance of some beneficial microorganisms that control soil-borne pathogenic microbes or degrade pollutants increased significantly in FCM, including Bacillus, Pseudomonas and Streptomyces bacterial genera and Chaetomium and Mycothermus fungal genera. Noteworthy, like CP, FCM still had a strong inhibitory effect on Fusarium at 90 d. Our results indicated that FCM not only increased the content of inorganic nitrogen and improved the respiration rate of soil microorganisms, but it also shortened the recovery time of beneficial soil microorganisms and increased taxonomic diversity. Our previous reports showed that FCM and CP treatments had the same effect in disease control and crop growth. Combined with the results of this experiment, we believe that FCM has the potential to replace CP, which would eliminate CP's detrimental environmental impact, improve farmer safety and promote sustainable crop production.
اظهر المزيد [+] اقل [-]Organic fertilizer activates soil beneficial microorganisms to promote strawberry growth and soil health after fumigation
2022
Li, Qingjie | Zhang, Daqi | Song, Zhaoxin | Ren, Lirui | Jin, Xi | Fang, Wensheng | Yan, Dongdong | Li, Yuan | Wang, Qiuxia | Cao, Aocheng
Soil fumigants aim to control soil-borne diseases below levels that affect economic crop production, but their use also reduces the abundance of beneficial microorganisms. Previous studies have shown that adding various types of fertilizers to soil after fumigation can reshape the soil microbial community and regulate crop growth. We fumigated soil with dazomet (DZ) that had been cropped continuously for more than 20 years. After fumigation we applied silicon fertilizer, potassium humate organic fertilizer, Bacillus microbial fertilizer or a mixture of the last two. We studied the effects of different fertilizers treatments on the soil's physicochemical properties, enzyme activities, key soil pathogens and beneficial microbes. We found that fertilizers applied after fumigation promoted soil beneficial microorganisms (such as Fimicutes, Chloroflexi, Bacillus and Actinomadura) restoration; increased Fusarium and Phytophthora pathogen mortality, the content of ammonium nitrogen, sucrase enzyme activity; and increased strawberry fruit yield. A significant increase in strawberry yield was positively correlated with increases in beneficial microorganisms such as Gemmatimonadota, Firmicutes, Bacillus and Flavisolibacter. We concluded that organic fertilizer applied after fumigation significantly increased the number of beneficial microorganisms, improved the physicochemical properties of the soil, increased soil enzyme activities, inhibited the growth of soil pathogens to increase strawberry fruit yield. In summary, organic fertilizer activated soil beneficial microorganisms after soil fumigation, promoted soil health, and increased strawberry fruit yield.
اظهر المزيد [+] اقل [-]Biodegradation of anthelmintics in soils: does prior exposure of soils to anthelmintics accelerate their dissipation?
2022
Lagos, Stahis | Moutzoureli, Chrysovalantou | Spiropoulou, Ifigenia | Alexandropoulou, Aggeliki | Karas, Panagiotis A. | Saratsis, Anastasios | Sotiraki, Smaragda | Karpouzas, Dimitrios G.
Anthelmintics (AHs) control animal infections with gastrointestinal nematodes. They reach soil through animal faeces deposited on soils or through manuring. Although soil constitutes a major AH sink, we know little about the mechanisms controlling their soil dissipation. We employed studies with fumigated and non-fumigated soils collected from 12 sheep farms with a variable record of albendazole (ABZ), ivermectin (IVM) and eprinomectin (EPM) use. From each farm, we collected soils from inside small ruminant barn facilities (series A, high exposure) and the associated grazing pastures (series B, low exposure). We asked the following questions: (a) What is the role of soil microorganisms in AH dissipation? (b) Does repeated exposure of soils to AHs lead to their accelerated biodegradation? (c) Which soil physicochemical properties control AH dissipation? Soil fumigation significantly retarded ABZ (DT₅₀ 1.9 and 4.33 days), IVM (34.5 and 108.7 days) and EPM dissipation (30 and 121 days) suggesting a key role of soil microorganisms in AH dissipation. No significant acceleration in AH dissipation was evident in soils from units with a record of the administration of AHs or in soil series A vs series B, suggesting that the level of prior exposure was not adequate to induce their enhanced biodegradation. Significant positive and negative correlations of soil total organic carbon (TOC) and ABZ and IVM dissipation, respectively, were observed. Soil adsorption of AHs increased in the order IVM > ABZ > EPM. TOC controlled soil adsorption of IVM and EPM, but not of ABZ, in support of the contrasting effect of TOC on IVM and ABZ dissipation.
اظهر المزيد [+] اقل [-]1,3-Dichloropropene and chloropicrin emission reduction using a flexible CuInS2/ZnS:Al-TiO2 photocatalytic film
2021
Yan, Lili | Guo, Xin | Rao, Pinhua | Huang, Lu | Sun, Mingxing | Li, Liang | Shen, Guoqing
Soil fumigation using 1,3-dichloropropene (1,3-D) and chloropicrin (CP) is an important strategy for agriculture production; however, excessive emissions can cause air pollution and possible human exposure. In this study, solar light-driven CuInS₂/ZnS:Al-TiO₂ photocatalytic film was prepared through spin-coating on the flexible polyethylene terephthalate (PET) substrate of 0.1 mm. Using the photocatalytic film, degradation of 1,3-D was inhibited in the Pci-clor 60 formulation of 1,3-D and CP. However, the degradation of CP was accelerated in this formulation, and the half-life was shortened from 0.66 to 0.40 h. Emissions of 1,3-D from soil to the air were reduced by 97.30%, 97.17%, 47.10%, and 7.88%, for treatments of D + Film, D + C + Film, D + PET, and D, respectively. The efficiencies for reducing 1,3-D emission were significantly improved by about 1.1 and 11.3 times using the film, compared with using the PET alone and no film, respectively. Furthermore, fumigation effects on nematodes could still achieve higher than 90%. The findings provided a basis for the practical application of quantum dot films to reduce soil fumigants emissions by photocatalytic degradation.
اظهر المزيد [+] اقل [-]