خيارات البحث
النتائج 1 - 10 من 262
Studies on the solid waste extracts from a chloro alkali factory: I. Morphological behaviour of rice seedlings grown in the waste extract.
1984
Misra S.R. | Misra B.N.
An overview of hazardous/toxic waste incineration.
1986
Lee C.C. | Huffman G.L. | Oberacker D.A.
Adaptation mechanisms of arsenic metabolism genes and their host microorganisms in soils with different arsenic contamination levels around abandoned gold tailings
2021
Li, Xianhong | Liu, Xiaoxia | Cao, Neng | Fang, Songjun | Yu, Caihong
Soil around the gold tailing due to the smelting process of wastewater and solid waste can lead to metal (loids) contamination, especially arsenic (As). Soil microorganisms have gradually evolved adaptive mechanisms in the process of long-term adaptation to As contamination. However, comprehensive investigations on As metabolism genes and their host microbial communities in soil profiles with different levels under long-term As contamination are lacking. There are selected three typical soil profiles (0–100 cm) with different metal (loids) contamination levels (L-low, M-moderate and H-high) around tailings in this research. It uses a Metagenomic approach to explore the adaptation mechanisms of arsenic metabolism genes and arsenic metabolism gene host microorganisms in both horizontal and vertical dimensions. The results showed that four categories of As metabolism genes were prevalent in soil profiles at different As contamination, with As reduction genes being the most abundant, followed by As oxidation genes, then respiration genes and methylation genes. The As metabolism genes arsBCR, aioE, arsPH, arrAB increased with the increase of metal (loid) contaminants concentration. Longitudinal arsA, arrA, aioA, arsM and acr3 increased in abundance in deep soil. Actinobacteria, Proteobacteria, Acidobacteria, and Chloroflexi were the dominant phylum of As metabolism gene host microorganisms. Different concentrations of metal (loid) contamination significantly affected the distribution of host As metabolism genes. Random forest prediction identified As as the most critical driver of As metabolism genes and their host microorganisms. Overall, this study provides a reference for a comprehensive investigation of the detoxification mechanisms of As metabolism microorganisms in soil profiles with different As contamination conditions, and is important for the development of As metabolism gene host microbial strains and engineering applications of microbial technologies to manage As contamination.
اظهر المزيد [+] اقل [-]Highly effective remediation of high-arsenic wastewater using red mud through formation of AlAsO4@silicate precipitate
2021
Lu, Zhixu | Qi, Xianjin | Zhu, Xing | Li, Xuezhu | Li, Kongzhai | Wang, Hua
High-arsenic wastewater derived from the metallurgical industry of nonferrous minerals is one of the most dangerous arsenic (As) sources that usually follow the emission of massive hazardous arsenic-bearing wastes. Considering the properties of red mud (RM), we propose an alternative and environmentally friendly method for the efficient remediation of high-arsenic wastewater using RM through formation of AlAsO₄@silicate precipitate, aiming at ''zero-emission of hazardous solid waste''. The results show nearly 100% of arsenic could be stepwisely removed from high-arsenic wastewater and reduce the arsenic concentration from 6100 mg/L to 40 μg/L using RM at room temperature. The highest arsenic removal capacity of RM reaches 101.5 mg/g at a RM-to-wastewater ratio of 40 g/L due to the superior arsenic adsorption and the co-precipitation of arsenate and Al³⁺ to form insoluble aluminum arsenate. The silicate shell of arsenic-loaded RM created at an alkaline condition acts as an arsenic stabilizer, resulting in a leached arsenic concentration of 1.2 mg/L in TCLP tests. RM acts as a highly effective arsenic remover and stabilizer for the disposal of high-arsenic wastewater. It shows great potential for the remediation of wastewater containing heavy metals with varying concentrations to produce clean water available for industrial purpose.
اظهر المزيد [+] اقل [-]Environmental assessment of viticulture waste valorisation through composting as a biofertilisation strategy for cereal and fruit crops
2020
Cortés, Antonio | Oliveira, Luis F.S. | Ferrari, Valdecir | Taffarel, Silvio R. | Feijoo, Gumersindo | Moreira, Maria Teresa
Composting is a solid waste management alternative that avoids the emission of methane associated with its disposal in landfill and reduces or eliminates the need for chemical fertilisers if compost is applied. The main objective of this study was to analyse the environmental burdens of composting as a way to achieve a more circular valorisation of wine waste. To do so, with the purpose of identifying optimal operational conditions and determining the “hotspots” of the process, the life cycle assessment (LCA) methodology was used. The consumption of diesel fuel in machinery was determined to be the main critical point in the environmental effects of the system, followed by the transport and distribution of the compost. After the application of compost instead of mineral fertilisers, corn, tomato and strawberry crops would have a better environmental performance in most impact categories. In this sense, a maximum improvement of 65% in terrestrial ecotoxicity is achieved in strawberry cultivation. In light of the results obtained, it is demonstrated that composting is a suitable way of organic waste valorisation according to Circular Economy principles.
اظهر المزيد [+] اقل [-]Application of solid waste of ductile cast iron industry for treatment of wastewater contaminated by reactive blue dye via appropriate nano-porous magnesium oxide
2020
Pourrahim, Solmaz | Salem, Amin | Salem, Shiva | Tavangar, Reza
The solid waste of ductile iron industry, which contains at least 88.0% magnesium oxide, is one of the toxic materials, leading to land contamination. On the other hand, the removal of reactive dyes from wastewaters is difficult required effective adsorbent like nano-porous MgO. The novelty of present investigation is based on nano-porous magnesium oxide production by precipitation from the solid waste to treat the wastewaters contaminated by reactive dye which is abundantly used in the textile industry. In order to improve the adsorptive properties of extracted MgO powder, the combinations of surfactants, containing cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and polyoxyethylene octyl phenyl ether (TX100) were applied based on the mixture design algorithm in the precipitation. The effects of processing factors such as surfactant composition, powder calcination temperature, surfactant dose and pH were evaluated on the removal efficiency. The results revolved that the combination of SDS and TX100, 1:1, plays an effective role in the production of particles with the appropriate average pore size, 16 nm. The adsorbent prepared in the optimum condition indicated a significant affinity for the removal of reactive dye which shows relatively pH-independent efficiency in the range of 3–9. The applied producer for fabrication of adsorbent eventually overcomes the pH-dependent problem for the toxic dye uptake, leading to produce the adsorbent with maximal adsorption capacity of 1000 mg g−1.
اظهر المزيد [+] اقل [-]Effective oxidation of methyl parathion pesticide in water over recycled glass based-MCM-41 decorated by green Co3O4 nanoparticles
2020
Salam, Mohamed Abdel | AbuKhadra, Mostaf R. | Mohamed, Aya S.
Pieces of glass as solid wastes were recycled in the synthesis of highly order MCM-41 that decorated by green fabricated Co₃O₄ nanoparticles using the green extract of green tea leaves forming novel green nano-composite. The synthetic Co₃O₄/MCM-41 exhibit high surface area, low bandgap energy (1.63 eV), and typical spherical morphology decorated by Co₃O₄ nanoparticles. The composite was evaluated as green photocatalyst in effective oxidation of methyl parathion pesticide in the presence of a visible light source. The degradation results revealed complete removal of 50 mg/L and 100 mg/L after 60 min and 90 min, respectively using 0.25 of the catalyst at pH 8. The detection of the TOC in the treated methyl parathion solution gives strong indications about the formation of organic intermediate compounds during the oxidation steps. The main detected intermediate compound are C₆H₅OH(NO₂), C₆H₅OH, (CH₃O)₃P(S), C₆H₄(OH)₂, C₆H₃(OH)₃, C₆H₄(NH₂)OP(O)(OCH₃)₂, (CH₃O)₂P(O)OH, (CH₂)₂C(OH)OH(CHO)OC(O), and HO₂C(CH₂)₂C(O)CHO. The detected intermediate compounds converted into SO₄²⁻, PO₄³⁻, NO₃⁻, and CO₂ under the extensive photocatalytic of them over Co₃O₄/MCM-41. The oxidizing species trapping test verified the controlling of the methyl parathion degradation pathway by the hydroxyl radicals. Finally, the composite showed significant reusability properties and applied five times in the oxidation of methyl parathion with considerable degradation percentages.
اظهر المزيد [+] اقل [-]Risk of penicillin fermentation dreg: Increase of antibiotic resistance genes after soil discharge
2020
Wang, Bing | Yan, Jianquan | Li, Guomin | Zhang, Jian | Zhang, Lanhe | Li, Zheng | Chen, Houhe
Penicillin fermentation dreg (PFD) is a solid waste discharged by pharmaceutical enterprises in the fermentation production process. Due to the residual antibiotic of PFD, the risk of antibiotic resistance bacteria (ARB) generation should be considered in the disposal process. High-throughput quantitative PCR (HT-qPCR) and 16S rRNA gene sequencing were performed to investigate the effect of PFD on the dynamics of antibiotic resistance genes (ARGs) and bacterial community during a lab-scale soil experiment. After the application of PFD, the bacterial number and diversity showed an obvious decrease in the initial days. The abundances of Streptomyces and Bacillus, which are the most widespread predicted source phyla of ARGs, increased remarkably from 4.42% to 2.59%–22.97% and 21.35%. The increase of ARGs was observed during the PFD application and the ARGs carried by PFD itself contributed to the initiation of soil ARGs. The results of redundancy analysis (RDA) show that the shift in bacterial community induced by variation of penicillin content is the primary driver shaping ARGs compositions.
اظهر المزيد [+] اقل [-]Tracing perfluoroalkyl substances (PFASs) in soils along the urbanizing coastal area of Bohai and Yellow Seas, China
2018
Meng, Jing | Wang, Tieyu | Song, Shuai | Wang, Pei | Li, Qifeng | Zhou, Yunqiao | Lü, Yonglong
With the shift of fluorine chemical industry from developed countries to China and increasing demand for fluorine chemical products, occurrence of perfluoroalkyl substances (PFASs) in production and application areas has attracted more attention. In this study, 153 soil samples were collected from 21 cities along the urbanizing coastal area of the Bohai and Yellow Seas. PFASs in this area were relatively higher, compared with other study areas. The concentrations ranged from 2.76 to 64.0 ng g−1, and those in most sites were between 2.76 and 13.9 ng g−1, with a predominance of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Among the 21 coastal cities, contaminations of PFASs in Zibo, Nantong and Binzhou were elevated, which was likely affected by local fluorine chemical plants, equipment manufacturing and chemical industry, respectively. The total emissions of PFOA and PFOS were similar, with amount of 4431 kg and 4335 kg, respectively. Atmospheric deposition was the largest source, accounting for 93.2% of total PFOA and 69.6% of PFOS, respectively. In addition, due to application of aqueous film-forming foams (AFFFs) and sulfluramid, disposal of sewage sludge and stacking of solid waste, emission of PFOA and PFOS to soil was 1617 kg, accounting for 9.29% of the whole China. In general, pollution in Jiangsu, Shandong and Tianjin was more serious than those in Liaoning and Hebei, which was consistent with industrialization level and size of industrial sectors emitting PFASs.
اظهر المزيد [+] اقل [-]Coal combustion residues and their effects on trace element accumulation and health indices of eastern mud turtles (Kinosternon subrubrum)
2018
Cochran, Jarad P. | Haskins, David L. | Eady, Naya A. | Hamilton, Matthew T. | Pilgrim, Melissa A. | Tuberville, Tracey D.
Coal combustion is a major energy source in the US. The solid waste product of coal combustion, coal combustion residue (CCR), contains potentially toxic trace elements. Before 1980, the US primarily disposed of CCR in aquatic settling basins. Animals use these basins as habitat and can be exposed to CCR, potentially affecting their physiology. To investigate the effects of CCR on eastern mud turtles (Kinosternon subrubrum), we sampled 30 turtles exposed to CCRs and 17 unexposed turtles captured in 2015–2016 from the Savannah River Site (Aiken, SC, USA). For captured turtles, we (1) quantified accumulation of CCR in claw and blood samples, (2) used bacterial killing assays to assess influences of CCR on immune responses, (3) compared hemogregarine parasite loads, and (4) compared metabolic rates via flow-through respirometry between CCR-exposed and unexposed turtles when increased temperature was introduced as an added stressor. Turtles exposed to CCR accumulated CCR-associated trace elements, corroborating previous studies. Blood Se and Sr levels and claw As, Se, and Sr levels were significantly higher in turtles from contaminated sites. Average bacterial killing efficiency was not significantly different between groups. Neither prevalence nor average parasite load significantly differed between CCR-exposed and reference turtles, although parasite load increased with turtle size. Regardless of site, temperature had a significant impact on turtle metabolic rates; as temperature increased, turtle metabolic rates increased. The effect of temperature on turtle metabolic rates was less pronounced for CCR-exposed turtles, which resulted in CCR-exposed turtles having lower metabolic rates than reference turtles at 30 and 35 °C. Our results demonstrate that turtles accumulate CCR from their environment and that accumulation of CCR is associated with changes in turtle physiological functions when additional stressors are present.
اظهر المزيد [+] اقل [-]