خيارات البحث
النتائج 1 - 10 من 216
Contribution of liquid water content enhancing aqueous phase reaction forming ambient particulate nitrosamines
2022
Choi, Na Rae | Park, Seungshik | Ju, Seoryeong | Lim, Yong Bin | Lee, Ji Yi | Kim, Eunhye | Kim, Soontae | Shin, Hye Jung | Kim, Yong Pyo
Contribution of liquid water content (LWC) to the levels of the carcinogenic particulate nitro(so) compounds and the chemistry affecting LWC were investigated based on the observation of seven nitrosamines and two nitramines in rural (Seosan) and urban (Seoul) area in South Korea during October 2019 and a model simulation. The concentrations of both the total nitrosamines and nitramines were higher in Seosan (12.48 ± 16.12 ng/m³ and 0.65 ± 0.71 ng/m³, respectively) than Seoul (7.41 ± 13.59 ng/m³ and 0.24 ± 0.15 ng/m³, respectively). The estimated LWC using a thermodynamic model in Seosan (12.92 ± 9.77 μg/m³) was higher than that in Seoul (6.20 ± 5.35 μg/m³) mainly due to higher relative humidity (75 ± 9% (Seosan); 62 ± 10% (Seoul)) and higher concentrations of free ammonia (0.13 ± 0.09 μmol/m³ (Seosan); 0.08 ± 0.01 μmol/m³ (Seoul)) and total nitric acid (0.09 ± 0.07 μmol/m³ (Seosan); 0.04 ± 0.02 μmol/m³ (Seoul)) in Seosan while neither fog nor rain occurred during the sampling period. The relatively high concentrations of the particulate nitrosamines (>30 ng/m³) only observed probably due to the higher LWC (>10 μg/m³) in Seosan. It implies that aqueous phase reactions involving NO₂ and/or uptake from the gas phase enhanced by LWC could be promoted in Seosan. Strong correlation between the concentrations of nitrosodi-methylamine (NDMA), an example of nitrosamines, simulated by a kinetic box model including the aqueous phase reactions and the measured concentration of NDMA in Seosan (R = 0.77; 0.37 (Seoul)) indicates that the aqueous phase reactions dominantly enhanced the NDMA concentrations in Seosan. On the other hand, it is estimated that the formation of nitrosamines by aqueous phase reaction was not significant due to the relatively lower LWC in Seoul compared to that in Seosan. Furthermore, it is presumed that nitramines are mostly emitted from the primary emission sources. This study implies that the concentration of the particulate nitrosamines can be promoted by aqueous phase reaction enhanced by LWC.
اظهر المزيد [+] اقل [-]Burden of dust storms on years of life lost in Seoul, South Korea: A distributed lag analysis
2022
Jung, Jiyun | Yi, Ŭn-mi | Myung, Woojae | Kim, Hyekyeong | Kim, Ho | Lee, Hyewon
Although dust storms have been associated with adverse health outcomes, studies on the burden of dust storms on deaths are limited. As global warming has induced significant climate changes in recent decades, which have accelerated desertification worldwide, it is necessary to evaluate the burden of dust storm-induced premature mortality using a critical measure of disease burden, such as the years of life lost (YLL). The YLL attributable to dust storms have not been examined to date. This study investigated the association between Asian dust storms (ADS) and the YLL in Seoul, South Korea, during 2002–2013. We conducted a time-series study using a generalized additive model assuming a Gaussian distribution and applied a distributed lag model with a maximum lag of 5 days to investigate the delayed and cumulative effects of ADS on the YLL. We also conducted stratified analyses using the cause of death (respiratory and cardiovascular diseases) and sociodemographic status (sex, age, education level, occupation, and marital status). During the study period, 108 ADS events occurred, and the average daily YLL was 1511 years due to non-accidental causes. The cumulative ADS exposure over the 6-day lag period was associated with a significant increase of 104.7 (95% CI, 31.0–178.5 years) and 34.4 years (4.0–64.7 years) in the YLL due to non-accidental causes and cardiovascular mortality, respectively. Sociodemographic analyses revealed associations between ADS exposure and the YLL in males, both <65 and ≥ 65 years old, those with middle-level education, and the unemployed, unmarried, and widowed (26.5–83.8 years). This study provides new evidence suggesting that exposure to dust storms significantly increases the YLL. Our findings suggest that dust storms are a critical environmental risk affecting premature mortality. These results could contribute to the establishment of public health policies aimed at managing dust storm exposure and reducing premature deaths.
اظهر المزيد [+] اقل [-]Organochlorine pesticides in the urban, suburban, agricultural, and industrial soil in South Korea after three decades of ban: Spatial distribution, sources, time trend, and implicated risks
2022
Khuman, Sanjenbam Nirmala | Park, Min-Kyu | Kim, Ho-Joong | Hwang, Seung-Man | Lee, Chang-Ho | Choi, Sung-Deuk
Organochlorine pesticides in soil samples across urban, suburban, agricultural, and industrial sites were analyzed every year between 2013 and 2016 in South Korea. The study aims to understand the residual status, diminution of occurrence from the South Korean environment, and its risk to humans after three decades of the ban. A general decreasing trend of OCPs has been observed over the years. The OCP concentrations were below the guideline values prescribed for soil pollution. Metabolites like p,p’-DDD and endosulfan sulfate contributed a major portion to the total OCP concentration over the years. The agricultural sites showed higher OCP levels than other site types. Compositional profile and diagnostic ratios suggested that the occurrence of DDT and endosulfan residues were due to historical inputs, but those of HCH and chlordane reflect recent usage in some pockets. The calculated incremental lifetime cancer risk was within the safety limit for all age groups across the genders in the majority of the sites. It is evident that the OCP load on soil is decreasing since the ban on usage. However, regular monitoring with a special focus on metabolites can be an effective control measure to regulate and eliminate the contamination of OCPs.
اظهر المزيد [+] اقل [-]Factors determining the seasonal variation of ozone air quality in South Korea: Regional background versus domestic emission contributions
2022
Lee, Hyung-Min | Park, Rokjin J.
South Korea has experienced a rapid increase in ozone concentrations in surface air together with China for decades. Here we use a 3-D global chemical transport model, GEOS-Chem nested over East Asia (110 E - 140 E, 20 N–50 N) at 0.25° × 0.3125° resolution, to examine locally controllable (domestic anthropogenic) versus uncontrollable (background) contributions to ozone air quality at the national scale for 2016. We conducted model simulations for representative months of each season: January, April, July, and October for winter, spring, summer, and fall and performed extensive model evaluation by comparing simulated ozone with observations from satellite and surface networks. The model appears to reproduce observed spatial and temporal ozone variations, showing correlation coefficients (0.40–0.87) against each observation dataset. Seasonal mean ozone concentrations in the model are the highest in spring (39.3 ± 10.3 ppb), followed by summer (38.3 ± 14.4 ppb), fall (31.2 ± 9.8 ppb), and winter (24.5 ± 7.9 ppb), which is consistent with that of surface observations. Background ozone concentrations obtained from a sensitivity model simulation with no domestic anthropogenic emissions show a different seasonal variation in South Korea, showing the highest value in spring (46.9 ± 3.4 ppb) followed by fall (38.2 ± 3.7 ppb), winter (33.0 ± 1.9 ppb), and summer (32.1 ± 6.7 ppb). Except for summer, when the photochemical formation is dominant, the background ozone concentrations are higher than the seasonal ozone concentrations in the model, indicating that the domestic anthropogenic emissions play a role as ozone loss via NOₓ titration throughout the year. Ozone air quality in South Korea is determined mainly by year-round regional background contributions (peak in spring) with summertime domestic ozone formation by increased biogenic VOCs emissions with persistent NOₓ emissions throughout the year. The domestic NOₓ emissions reduce MDA8 ozone around large cities (Seoul and Busan) and hardly increase MDA8 in other regions in spring, but it increases MDA8 across the country in summer. Therefore, NOₓ reduction can be effective in control of MDA8 ozone in summer, but it can have rather countereffect in spring.
اظهر المزيد [+] اقل [-]Optical properties and 14C ages of stream DOM from agricultural and forest watersheds during storms
2021
Lee, Seung-Cheol | Shin, Yera | Jeon, Young-Joon | Lee, Eun-Ju | Eom, Jae-Sung | Kim, Bomchul | Oh, Neung-Hwan
Forest and agricultural land use affects the concentration and composition of dissolved organic carbon (DOC) in streams and rivers. To elucidate the impacts of forest and agricultural land use on stream DOC during storm events, we investigated DOC concentration ([DOC]), optical properties of dissolved organic matter (DOM), and Δ¹⁴C-DOC in both forest- and agriculture-dominated headwater streams in South Korea in the summer of 2012. One forested and five agricultural streams were investigated. During storms, the peak [DOC] of forest stream increased to 5.8 mg L⁻¹, approximately two times larger than that of the most agricultural stream (3.2 mg L⁻¹), demonstrating the weaker storm responses of the [DOC] of agricultural streams to hydrological change. Five PARAFAC components were identified, including three terrestrial humic-like substances (C1, C2, C3), one microbial humic substance (C4), and one microbial protein-like substances (C5). The mean (C4+C5)/(C1+C2+C3) of all storm events at the most agricultural stream was 1.5 times larger than that of the most forested stream, suggesting that more protein-like DOM is exported from agricultural watersheds. Whereas a forest stream was primarily composed of terrestrially derived and ¹⁴C-enriched modern DOC, the ¹⁴C-age of the most agricultural stream was up to ∼1000 years old. The results suggest that agricultural practices could decrease the old organic carbon pools from soils. However, how quickly the aged DOC can be degraded to CO₂ in streams is unknown, warranting future investigation on lability of the aged DOC and their effects on CO₂ evasion from rivers and estuaries downstream.
اظهر المزيد [+] اقل [-]Nitrous oxide emission and sweet potato yield in upland soil: Effects of different type and application rate of composted animal manures
2021
Ruangcharus, Chuanpit | Kim, Sung Un | Yoo, Ga-young | Choi, Eun-Jung | Kumar, Sandeep | Kang, Namgoo | Hong, Chang Oh
The aims of this study were to determine type and application rate of composted animal manure to optimize sweet potato yield relative to N₂O emissions from upland soils. To this end, the study was conducted on upland soils amended with different types and rates of composted animal manure and located at two geographically different regions of South Korea. Field trials were established at Miryang and Yesan in South Korea during the sweet potato (Ipomoea batatas) growing season over 2 years: 2017 (Year 1) and 2018 (Year 2). Three composted animal manures (chicken, cow, and pig) were applied at the rates of 0, 10, and 20 Mg ha⁻¹ to upland soils in both locations. In both Years and locations, manure type did not affected significantly cumulative N₂O emissions from soil during the sweet potato growing season or the belowground biomass of sweet potato. However, application rate of animal manures affected significantly the cumulative N₂O emission, nitrogen (N) in soil, and belowground biomass of sweet potato. An increase in cumulative N₂O emission with application rates of animal manures was related to total N and inorganic N concentration in soil. The belowground biomass yield of sweet potato but also the cumulative N₂O emission increased with increasing application rate of composted animal manures up to 7.6 and 16.0 Mg ha⁻¹ in Miryang and Yesan, respectively. To reduce N₂O emission from arable soil while increasing crop yield, composted animal manures should be applied at less than application rate that produce the maximum belowground biomass of sweet potato.
اظهر المزيد [+] اقل [-]Endocrine disrupting potential of veterinary drugs by in vitro stably transfected human androgen receptor transcriptional activation assays
2021
Park, Yooheon | Park, Juhee | Lee, Hee-Seok
We describe the androgen receptor (AR) agonistic/antagonistic effects of 140 veterinary drugs regulated in Republic of Korea, by setting maximum residue limits. It was conducted using two in vitro test guidelines of the Organization for Economic Cooperation and Development (OECD)—the AR-EcoScreen AR transactivation (TA) assay and the 22Rv1/MMTV_GR-KO AR TA assay. These were performed alongside the AR binding affinity assay to confirm whether their AR agonistic/antagonistic effects are based on the binding affinity to AR. Prior to conducting the AR TA assay, the proficiency test was passed the proficiency performance criterion for the AR agonist and AR antagonist assays. Among the veterinary drugs tested, four veterinary drugs (dexamethasone, trenbolone, altrenogest, and nandrolone) and six veterinary drugs (cymiazole, dexamethasone, zeranol, phenothiazine, bromopropylate, and isoeugenol) were determined as AR agonist and AR antagonist, respectively in both in vitro AR TA assays. Zeranol exhibited weak AR agonistic effects with a PC₁₀ value only in the 22Rv1/MMTV_GR-KO AR TA assay. Regarding changing the AR agonistic/antagonistic effects through metabolism, the AR antagonistic activities of zeranol, phenothiazine, and isoeugenol decreased significantly in the presence of phase I + II enzymes.These data indicate that various veterinary drugs could have the potential to disrupt AR-mediated human endocrine system. Furthermore, this is the first report providing information on AR agonistic/antagonistic effects of veterinary drugs using in vitro OECD AR TA assays.
اظهر المزيد [+] اقل [-]Concentrations and distributions of neonicotinoids in drinking water treatment plants in South Korea
2021
Kim, Jiwon | Wang, Wenting | Lee, Soohyung | Park, Ju-Hyun | Oh, Jeong-Eun
We investigated the fates of seven neonicotinoids (NNIs) in full-scale drinking water treatment plants and assessed human exposure to NNIs through consuming drinking water. The total NNI concentrations in raw water and treated water samples from the drinking water treatment plants were 20.4–166 ng/L (median 118 ng/L) and 1.11–94.7 ng/L (median 20.4 ng/L), respectively. The dinotefuran (DIN) concentrations in raw water collected in different seasons were different, and the highest DIN concentration was found in summer. The drinking water treatment processes removed >91% of the NNIs except DIN and thiamethoxam (THIAM), for which the mean removal rates were 70% and 74%, respectively. The removal rates for all of the NNIs were higher for the granular activated carbon filtration process (mean 83.5%) than the other drinking water treatment plant processes (coagulation/sedimentation 22.3%, ozonation 29.2%). However, the removal rates in the granular activated carbon process were lower for DIN and THIAM (61.0% and 59.2%, respectively) than the other NNIs. Significant correlations were found between the NNI removal rates and physicochemical properties (solubility in water and log (octanol–water partition coefficient)). The estimated mean human exposure to NNIs in drinking water was 0.528 ng/(kg body weight d).
اظهر المزيد [+] اقل [-]Worldwide cadmium accumulation in soybean grains and feasibility of food production on contaminated calcareous soils
2021
Zhang, Sha | Song, Jing | Wu, Longhua | Chen, Zheng
Elevated toxins in soybeans extensively threaten Asian residents and over one billion vegetarians worldwide. An integrated dataset of toxic trace metal(loid)s especially cadmium (Cd) analysis in soybean grain samples (n = 5217) from 12 countries/regions of origin was compiled for risk analysis. Worldwide grain Cd averaged 0.093 mg kg⁻¹, but mean values varied 16-fold between regions, with South China (0.32 mg kg⁻¹) > Argentina (0.15 mg kg⁻¹) = German (0.13 mg kg⁻¹) > Japan (0.11 mg kg⁻¹) > the United States (0.064 mg kg⁻¹) > Central-North China (0.020–0.60 mg kg⁻¹) ≥ Iran (0.042 mg kg⁻¹) = Brazil (0.023 mg kg⁻¹) = South Korea (0.020 mg kg⁻¹). Regression analysis suggested widespread contamination and acidic soil features significantly contributed the elevated food Cd contamination worldwide. Arsenic (As) and lead (Pb) are also of concern because excessive levels were often observed in grains. Given that soil Cd bioavailability is generally low in alkaline pH ranges, the feasibility of producing safe food from contaminated land was investigated by greenhouse experiments with one low-Cd soybean cultivar grown on 20 contaminated calcareous soils. Equilibrium-based approaches i.e., 0.01 M CaCl₂ and in-situ porewater extractions, and diffusion-based diffusive gradients in thin-films technique were used to determine the plant-available fractions of soil metal(loid)s to explain the bioaccumulation variation. The results suggested that soybean grains bioaccumulated mean 0.76 mg Cd kg⁻¹, ranging from 0.16 to 2.1 mg kg⁻¹, whereas As and Pb bioaccumulation was low. Cadmium accumulation was closely correlated with plant-available Cd fractions especially the 0.01 M CaCl₂-extractable Cd, but negatively correlated with soil pH. Even in the alkaline pH range, a slight decrease of soil pH would increase grain Cd significantly. Study region and those arable lands that have similar soil conditions are not recommended for growing soybean unless novel remediation strategies are developed.
اظهر المزيد [+] اقل [-]Trophic transfer of persistent toxic substances through a coastal food web in Ulsan Bay, South Korea: Application of compound-specific isotope analysis of nitrogen in amino acids
2020
An, Yoonyoung | Hong, Seongjin | Kim, Youngnam | Kim, Mungi | Choi, Bohyung | Won, Eun-Ji | Shin, Kyung-Hoon
Trophic magnification factor (TMF) of persistent toxic substances (PTSs: Hg, PCBs, PAHs, and styrene oligomers (SOs)) in a coastal food web (12 fish and four invertebrates) was determined in Ulsan Bay, South Korea. The nitrogen stable isotope ratios (δ¹⁵N) of amino acids [δ¹⁵NGₗᵤ₋Pₕₑ based on glutamic acid (δ¹⁵NGₗᵤ) and phenylalanine (δ¹⁵NPₕₑ)] were used to estimate the trophic position (TPGₗᵤ₋Pₕₑ) of organisms. The TPGₗᵤ₋Pₕₑ of organisms ranged from 1.64 to 3.69, which was lower than TP estimated by δ¹⁵N of bulk particulate organic matter (TPBᵤₗₖ: 2.46–4.21). Mercury and CB 138, 153, 187, and 180 were biomagnified through the whole food web (TMF > 1), while other PTSs, such as PAHs and SOs were not (biodilution of SOs firstly reported). In particular, the trophic transfer of PTSs was pronounced in the resident fish (e.g., rock bream, sea perch, Korean rockfish). Of note, CB 99, 101, 118, and 183 were additionally found to be biomagnifying PTSs in these species. Thus, fish residency appears to represent an important factor in determining the TMF of PTSs in the coastal environment. Overall, δ¹⁵NGₗᵤ₋Pₕₑ provided accurate TPs of organisms and could be applied to determine the trophic transfer of PTSs in coastal food webs.
اظهر المزيد [+] اقل [-]