خيارات البحث
النتائج 1 - 10 من 145
Yields of field-grown soybeans exposed to simulated acidic deposition.
1989
Evans L.S. | Lewin K.F. | Santucci K.A. | Owen E.M.
Assessment of lead tolerance on Glycine max (L.) Merr. at early growth stages
2021
Blanco, Andrés | Pignata, María L. | Lascano, Hernan Ramiro | Rodriguez, Judith Hebelen
Lead (Pb) contamination of agricultural soils, and subsequently of crops, has been widely reported. Soybean (Glycine max (L.) Merr.) has been indicated as a plant that accumulates Pb, even in soils that do not exceed the maximum permissible levels. Considering the toxicity of this heavy metal, the aim of the present study was to assess different concentrations of Pb, from low to extremely high (0.25 mM, 1 mM, and 2.5 mM), in soybean seedlings and their tolerance by analyzing morpho-physiological parameters in hydroponic experiments. Soybean seedlings were exposed to control and Pb treatments during 8 days, coinciding with the early growth stages, and the following variables were analyzed: biomass, Pb content in roots, stems and leaves, photosynthetic efficiency, leaf area, biochemical response (antioxidant power, chlorophylls, malondialdehyde), and relative water content of leaves. Results showed that roots accumulated much more Pb than the other organs, with Pb accumulation in roots being saturated even at the lowest Pb concentration, which was reflected in root biomass. Moreover, absorption of culture solutions was lower in Pb treatments, which was also reflected in the lower leaf relative water content. Lead toxicity symptoms in leaves (chlorosis and dark spots, and a decrease of biomass and leaf area, chlorophyll content, and photosynthetic efficiency), and an increase of the oxidative defense system were associated only with the highest Pb concentration (2.5 mM). Our findings support the evidence of soybean as a species tolerant to Pb, showing the effects of toxicity at very high concentrations. | Instituto de Fisiología y Recursos Genéticos Vegetales | Fil: Blanco, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto Multidisciplinario de Biología Vegetal (IMBIV). Área Contaminación y Bioindicadores; Argentina | Fil: Blanco, Andrés. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina | Fil: Pignata, María L. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto Multidisciplinario de Biología Vegetal (IMBIV). Área Contaminación y Bioindicadores; Argentina | Fil: Pignata, María L. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina | Fil: Lascano, Hernán Ramiro. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Fisiología Vegetal; Argentina | Fil: Lascano, Hernán Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Unidad de Estudios Agropecuarios (UDEA); Argentina | Fil: Lascano, Hernán Ramiro. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales. Argentina | Fil: Rodriguez, Judith H. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto Multidisciplinario de Biología Vegetal (IMBIV). Área Contaminación y Bioindicadores. Argentina | Fil: Rodriguez, Judith H. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina
اظهر المزيد [+] اقل [-]Lead uptake and translocation pathways in soybean seedlings: the role of ion competition and transpiration rates
2021
Blanco, Andrés | Pignata, María L. | Lascano, Hernan Ramiro | Salazar, María J. | Rodriguez, Judith Hebelen
Glycine max (L.) Merr. (soybean) crop plants have been found to have high lead (Pb) levels in aerial organs; however, knowledge about the processes involved in the incorporation, and subsequent translocation and accumulation of the metal in the plants is scarce. Considering the toxicity of this heavy metal, the aim of the present study was to evaluate Pb uptake and translocation, and their toxic effects on soybean seedlings via experiments of ionic competition with Ca2+ (2.5 mM, Ca:Pb 1:1) and alteration of the transpiration flow [0.25 mM Pb(NO3)2]. The following variables were analyzed: biomass, leaf area (morphological parameters), photosynthetic efficiency, biochemical response (considered physiological stress markers: antioxidant power, chlorophylls, carotenoids, starch, proteins, sugars, and malondialdehyde), and Pb content. Results showed that soybean seedlings can accumulate high Pb concentration in its organs; however, in general, no morpho-physiological Pb stress symptoms were observed, except for lipid peroxidation and antioxidant power. The treatment with Ca ions was not effective in reducing Pb entry into root over time when both Ca and Pb where present in the grow solution. Alteration of the transpiration rate in soybean showed that the air flow increased the consumption of solutions, regardless of the treatments. | Instituto de Fisiología y Recursos Genéticos Vegetales | Fil: Blanco, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal (IMBIV). Área Contaminación y Bioindicadores; Argentina | Fil: Blanco, Andrés. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina | Fil: Pignata, María L. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal (IMBIV). Área Contaminación y Bioindicadores; Argentina | Fil: Pignata, María L. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina | Fil: Lascano, Hernán Ramiro. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Fisiología Vegetal; Argentina | Fil: Lascano, Hernán Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Estudios Agropecuarios (UDEA); Argentina | Fil: Lascano, Hernán Ramiro. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina | Fil: Salazar, María J. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal (IMBIV). Área Contaminación y Bioindicadores; Argentina | Fil: Salazar, María J. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina | Fil: Rodriguez, Judith H. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal (IMBIV). Área Contaminación y Bioindicadores; Argentina | Fil: Rodriguez, Judith H. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina
اظهر المزيد [+] اقل [-]Evaluation of genotoxicity in bat species found on agricultural landscapes of the Cerrado savanna, central Brazil
2022
Habitat loss and fragmentation together represent the most significant threat to the world's biodiversity. In order to guarantee the survival of this diversity, the monitoring of bioindicators can provide important insights into the health of a natural environment. In this context, we used the comet assay and micronucleus test to evaluate the genotoxic susceptibility of 126 bats of eight species captured in soybean and sugarcane plantation areas, together with a control area (conservation unit) in the Cerrado savanna of central Brazil. No significant differences were found between the specimens captured in the sugarcane and control areas in the frequency of micronuclei and DNA damage (comet assay). However, the omnivore Phyllostomus hastatus had a higher frequency of nuclear abnormalities than the frugivore Carollia perspicillata in the sugarcane area. Insectivorous and frugivorous bats presented a higher frequency of genotoxic damage than the nectarivores in the soybean area. In general, DNA damage and micronuclei were significantly more frequent in agricultural environments than in the control area. While agricultural development is an economic necessity in developing countries, the impacts on the natural landscape may result in genotoxic damage to the local fauna, such as bats. Over the medium to long term, then DNA damage may have an increasingly negative impact on the wellbeing of the local species.
اظهر المزيد [+] اقل [-]Assessment of elevated CO2 concentrations and heat stress episodes in soybean cultivars growing in heavy metal polluted soils: Crop nutritional quality and food safety
2022
Blanco, Andrés | Högy, Petra | Zikeli, Sabine | Pignata, María L. | Rodriguez, Judith H.
The present study evaluated the interactive effects of global change and heavy metals on the growth and development of three soybean [Glycine max (L.) Merrill] cultivars and the consequences on yield and food safety. Soybean cultivars (Alim 3.14 from Argentina, and ES Mentor and Sigalia, from Germany) were grown until maturity in heavy metals polluted soils from the Rhine Valley, Germany, at two CO₂ concentrations (400 and 550 ppm) and heat stress (HS) episodes (9 days with 10 °C higher than maximum regular temperature) during the critical growth period in controlled environmental chambers. Different morpho-physiological parameters, heavy metal concentration in aerial organs, seed quality parameters, and toxicological index were recorded. The results showed that no morphological differences were observed related to CO₂. Moreover, Alim 3.14 showed the highest yield under control conditions, but it was more sensitive to climatic conditions than the German cultivars, especially to heat stress which strongly reduces the biomass of the fruits. Heavy metals concentration in soil exceeds the legislation limits for agricultural soils for Cd and Pb, with 1.6 and 487 mg kg⁻¹ respectively. In all cultivars, soybeans accumulated Cd in its aerial organs, and it could be translocated to fruits. Cd concentration in seeds ranged between 0.6 and 2.4 mg kg⁻¹, which exceed legislation limits and with toxicological risk to potential Chinese consumers. Pb levels were lower than Cd in seeds (0.03–0.17 mg kg⁻¹), and the accumulation were concentrated in the vegetative organs, with 93% of the Pb incorporated. Moreover, pods accumulated 11 times more Pb than seeds, which suggests that they act as a barrier to the passage of Pb to their offspring. These results evidence that soybean can easily translocate Cd, but not Pb, to reproductive organs. No regular patterns were observed in relation to climatic influence on heavy metal uptake.
اظهر المزيد [+] اقل [-]Effects of plastic particles on germination and growth of soybean (Glycine max): A pot experiment under field condition
2021
Li, Bintao | Huang, Shan | Wang, Haoming | Liu, Mengjuan | Xue, Sha | Tang, Darrell | Cheng, Wanli | Fan, Tinglu | Yang, Xiaomei
Plastic residues have become a serious environmental problem in areas where agricultural plastic film are used intensively. Although numerous of studies have been done to assess its impacts on soil quality and crop yields, the understanding of meso-plastic particles effects on plant is still limited. In this study, low density polyethylene (PE) and biodegradable plastic (Bio) mulch film were selected to study the effects of meso-plastic debris on soybean germination and plant growth with the accumulation levels of 0%, 0.1%, 0.5% and 1% in soil (w: w, size ranging 0.5–2 cm) by a pot experiment under field condition. Results showed that the germination viability of soybean seeds was reduced to 82.39%, 39.44% and 26.06% in the treatments with 0.1%, 0.5% and 1% added plastic debris compared to the control (CK), respectively, suggesting that plastic residues in soil inhibit the viability of soybean seed germination. The plastic debris had a significant negative effect on plant height and culm diameter during the entire growth stage of soybean. Similarly, the leaf area at harvest was reduced by 1.97%, 6.86% and 11.53% compared to the CK in the treatments with 0.1%, 0.5% and 1% plastic debris addition, respectively. In addition, the total plant biomass under plastic addition was reduced in both the flowering and harvesting stages, compared to the CK. For the different type of plastic residues, plant height, leaf area and root/shoot ratio at group PE were significantly lower than those of groups treated by Bio. In conclusion, PE debris had a greater negative effects on plant height, culm diameter, leaf area and root/shoot ratio while Bio debris mainly showed the adverse effects on germination viability and root biomass especially at the flowering stage. Therefore, further research is required to elaborate plastic particles’ effects on different stages of crops and soil quality.
اظهر المزيد [+] اقل [-]Insight into metabolism pathways of pesticide fomesafen in rice: Reducing cropping and environmental risks
2021
Chen, Zhao Jie | Qiao, Yu Xin | Zhang, Nan | Liu, Jintong | Yang, Hong
Fomesafen (FSA) is widely used in soybean fields for weed control. However, the persisting characteristics of FSA in the agricultural soil or water may become a hidden danger causing environmental pollution and phytotoxicity to succession crops. In this study, the growth and physiological responses of rice to FSA were investigated. It was found that the growth of rice seedlings was obviously inhibited by FSA exposure especially at over 0.1 mg L⁻¹. To gain an insight into the molecular mechanisms for the potential ecotoxicology, four libraries of rice roots and shoots exposed to FSA were created and subjected to the global RNA-sequencing (RNA-Seq) combined with HRLC-Q-TOF-MS/MS analytical technologies to comprehensively characterize the biochemical processes and catalytic reactions involved in FSA metabolism in rice. Compared with those without FSA, 499 and 450 up-regulated genes in roots and shoots with FSA were detected. Many of them were closely correlated with the tolerance to environmental stress, detoxification of xenobiotics and molecular metabolism process including cytochrome P450, glutathione S-transferases and acetyltransferase. A total of eight metabolites and fourteen conjugates in the reactive pathways of hydrolysis, substitution, reduction, methylation, glycosylation, acetylation, and malonylation were characterized by HRLC-Q-TOF-MS/MS. The relationship between the metabolized derivatives of FSA and enhanced expression the corresponding enzymatic regulators was established. This study will help understand the mechanisms and pathways of FSA metabolism and inspire the further research on FSA degradation in the paddy crops and environmental or health risks.
اظهر المزيد [+] اقل [-]Paddy-upland rotation with Chinese milk vetch incorporation reduced the global warming potential and greenhouse gas emissions intensity of double rice cropping system
2021
Zhong, Chuan | Liu, Ying | Xu, Xintong | Yang, Binjuan | Aamer, Muhammad | Zhang, Peng | Huang, Guoqin
It is a common practice to maintain soil fertility based on the paddy-upland rotation with green manure in the subtropical region of China. However, rare studies are known about greenhouse gas (GHG) emissions from the paddy-upland rotation with green manure incorporation. Therefore, we conducted a field experiment of two years to compared with the effect of two kinds of green manure (CV: Chinese milk vetch and OR: Oilseed rape), and two kinds of cropping system (DR: double rice system and PR: paddy-upland rotation) on greenhouse gases emissions. We have found that the annual accumulation of CH₄ of Chinese milk vetch-rice-sweet potato || soybean was significantly reduced by 32.95%∼63.22% compared with other treatments, mainly because Chinese milk vetch reduced the abundance of methanogens by reducing soil C/N ratio. Meanwhile increasing soil permeability resulting from paddy-upland rotation also reduced soil CH₄ emission. However, The annual accumulation of N₂O of Chinese milk vetch-rice-sweet potato || soybean was increased by 17.39%∼870.11% compared with other treatments, mainly attributed to paddy-upland rotation decreased soil pH and nosZ abundance and increased nirK and nirS, thus enhancing N₂O emission, meanwhile the Chinese milk vetch incorporation and its interaction with the paddy-upland rotation has greatly enhanced the contents of NO₃⁻-N and abundance of ammonia-oxidizing archaea (AOA). The area-scaled global warming potential (GWP) and the biomass-scaled greenhouse gas emissions intensity (GHGI) of Chinese milk vetch-rice-sweet potato || soybean was reduced by 19.01%∼50.69% and 5.38%∼35.77% respectively. Thereby, the Chinese milk vetch-rice-sweet potato || soybean cropping system was suitable for agricultural sustainable development.
اظهر المزيد [+] اقل [-]Vertical migration of microplastics along soil profile under different crop root systems
2021
Li, Haixiao | Lu, Xueqiang | Wang, Shiyu | Zheng, Boyang | Xu, Yan
Microplastics are highly accumulated in soils and supposed to migrate vertically due to water infiltration, fauna activities, and root growth. In this study, the vertical migration of microplastics along soil profile under three crop roots (corn, soybean, and ryegrass) was analyzed by a laboratory-scale incubation experiment. When microplastics were initially distributed in the surface layer, crop roots showed little effects on the vertical migration of microplastics. But in terms of homogenous microplastic distribution along soil profile, corn roots could contribute to the upward movement of microplastics in the middle layers (7–12 cm). It could be related to more pores and fissures created by primary and secondary corn roots and buoyancy effects once the pores and fissures were filled with water. Additionally, a significant positive correlation between microplastic numbers and tertiary roots of ryegrass has been observed and indicated the microplastic retention ability of fine crop roots. According to the results, in contrast to the downward microplastic migration caused by water infiltration and soil fauna activities, crop roots tended to move microplastics upwards or maintain them in soil layers.
اظهر المزيد [+] اقل [-]Effect of biochar on Cd and pyrene removal and bacteria communities variations in soils with culturing ryegrass (Lolium perenne L.)
2020
Li, Guirong | Chen, Fukai | Jia, Shengyong | Wang, Zongshuo | Zuo, Qiting | He, Hongmou
Organic contaminations and heavy metals in soils cause large harm to human and environment, which could be remedied by planting specific plants. The biochars produced by crop straws could provide substantial benefits as a soil amendment. In the present study, biochars based on wheat, corn, soybean, cotton and eggplant straws were produced. The eggplant straws based biochar (ESBC) represented higher Cd and pyrene adsorption capacity than others, which was probably owing to the higher specific surface area and total pore volume, more functional groups and excellent crystallization. And then, ESBC amendment hybrid Ryegrass (Lolium perenne L.) cultivation were investigated to remediate the Cd and pyrene co−contaminated soil. With the leaching amount of 100% (v/w, mL water/g soil) and Cd content of 16.8 mg/kg soil, dosing 3% ESBC (wt%, biochar/soil) could keep 96.2% of the Cd in the 10 cm depth soil layer where the ryegrass root could reach, and it positively help root adsorb contaminations. Compared with the single planting ryegrass, the Cd and pyrene removal efficiencies significantly increased to 22.8% and 76.9% by dosing 3% ESBC, which was mainly related with the increased plant germination of 80% and biomass of 1.29 g after 70 days culture. When the ESBC dosage increased to 5%, more free radicals were injected and the ryegrass germination and biomass decreased to 65% and 0.986 g. Furthermore, when the ESBC was added into the ryegrass culture soil, the proportion of Cd and pyrene degrading bacteria Pseudomonas and Enterobacter significantly increased to 4.46% and 3.85%, which promoted the co−contaminations removal. It is suggested that biochar amendment hybrid ryegrass cultivation would be an effective method to remediate the Cd and pyrene co−contaminated soil.
اظهر المزيد [+] اقل [-]