خيارات البحث
النتائج 1 - 10 من 125
Associations between low-dose triclosan exposure and semen quality in a Chinese population
2022
Yuan, Guanxiang | Ma, Yue | Zeng, Yuxing | Pan, Haibin | Liu, Peiyi | Liu, Yu | Liu, Guihua | Cheng, Jinquan | Guo, Yinsheng
The antimicrobial agent triclosan (TCS) has attracted much attention worldwide because of its pervasive existence in the human body and environment. TCS exposure has been reported to be associated with decreased male reproductive function. However, few studies have investigated these associations in humans. To examine the relationship between TCS in urine and male semen quality. A total of 406 men from a reproductive clinic were enrolled in this study. Urinary TCS concentrations were determined by ultra-high performance liquid chromatography–electrospray ionization tandem mass spectrometry. Sixteen semen parameters were assessed according to the guidelines of World Health Organization (WHO), including parameters for volume, count, motility, and motion. We used multivariate linear regression models and restricted cubic splines to estimate the linear and non-linear associations between TCS exposure and semen parameters, respectively. Logistical regression models were further applied to explore the associations with abnormal semen quality. TCS was detected in 74.6% of urine specimens. The monotonous trend of TCS tertiles and continuous TCS levels with all semen quality parameters were not observed in multivariate linear regression models (p > 0.05). However, compared with those in the lowest tertile, subjects in the second tertile showed significantly higher linearity and wobble (p < 0.05), indicating potential effects on sperm motion. In the models using restricted cubic splines with 3–5 knots, there were no significant non-linear associations between TCS exposure and any semen quality parameter. In addition, TCS tertiles were not associated with the risk of abnormal semen quality (i.e., count and motility) in the logistical regression models. Our results revealed that low-level TCS exposure may have limited (none or modest) effects on male semen quality, potentially inducing some fluctuations. Further mechanistic studies on low levels of exposure are needed.
اظهر المزيد [+] اقل [-]Perfluorooctane sulfonate induces suppression of testosterone biosynthesis via Sertoli cell-derived exosomal/miR-9-3p downregulating StAR expression in Leydig cells
2022
Huang, Jiyan | Ren, Hang | Tan, Annie | Li, Ting | Wang, Hongxia | Jiang, Lianlian | Zheng, Shaokai | Qi, Han | Ji, Binyan | Wang, Xipei | Qu, Jianhua | Zhao, Jianya | Qiu, Lianglin
Perfluorooctane sulfonate (PFOS) is associated with male reproductive disorder, but the related mechanisms are still unclear. In this study, we used in vivo and in vitro models to explore the role of Sertoli cell-derived exosomes (SC-Exo)/miR-9-3p/StAR signaling pathway on PFOS-induced suppression of testosterone biosynthesis. Forty male ICR mice were orally administrated PFOS (0.5–10 mg/kg/bw) for 4 weeks. Bodyweight, organ index, sperm count, reproductive hormones were evaluated. Primary Sertoli cells and Leydig cells were used to delineate the molecular mechanisms that mediate the effects of PFOS on testosterone biosynthesis. Our results demonstrated that PFOS dose-dependently induced a decrease in sperm count, low levels of testosterone, and damage in testicular interstitium morphology. In vitro models, PFOS significantly increased miR-9-3p levels in Sertoli cells and SC-Exo, accompanied by a decrease in testosterone secretion and StAR expression in Leydig cells when Leydig cells were exposed to SC-Exo. Meanwhile, inhibition of SC-Exo or miR-9-3p by their inhibitors significantly rescued PFOS-induced decreases in testosterone secretion and the mRNA and protein expression of the StAR gene in Leydig cells. In summary, the present study highlights the role of the SC-Exo/miR-9-3p/StAR signaling pathway in PFOS-induced suppression of testosterone biosynthesis, advancing our understanding of molecular mechanisms for PFOS-induced male reproductive disorders.
اظهر المزيد [+] اقل [-]The neonicotinoid thiamethoxam impairs male fertility in solitary bees, Osmia cornuta
2021
Strobl, Verena | Albrecht, Matthias | Villamar-Bouza, Laura | Tosi, Simone | Neumann, Peter | Straub, Lars
The ongoing loss of global biodiversity is endangering ecosystem functioning and human food security. While environmental pollutants are well known to reduce fertility, the potential effects of common neonicotinoid insecticides on insect fertility remain poorly understood. Here, we show that field-realistic neonicotinoid exposure can drastically impact male insect fertility. In the laboratory, male and female solitary bees Osmia cornuta were exposed to four concentrations of the neonicotinoid thiamethoxam to measure survival, food consumption, and sperm traits. Despite males being exposed to higher dosages of thiamethoxam, females revealed an overall increased hazard rate for survival; suggesting sex-specific differences in toxicological sensitivity. All tested sublethal concentrations (i.e., 1.5, 4.5 and 10 ng g⁻¹) reduced sperm quantity by 57% and viability by 42% on average, with the lowest tested concentration leading to a reduction in total living sperm by 90%. As the tested sublethal concentrations match estimates of global neonicotinoid pollution, this reveals a plausible mechanism for population declines, thereby reflecting a realistic concern. An immediate reduction in environmental pollutants is required to decelerate the ongoing loss of biodiversity.
اظهر المزيد [+] اقل [-]The association between metal exposure and semen quality in Chinese males: The mediating effect of androgens
2020
Liu, Peiyi | Yuan, Guanxiang | Zhou, Qi | Liu, Yu | He, Xinpeng | Zhang, Huimin | Guo, Yinsheng | Wen, Ying | Huang, Suli | Ke, Yuebin | Chen, Jinquan
As a crucial factor in male reproduction, androgens may represent an intermediate biological mechanism linking metal exposure with effects on semen quality. This study aimed to investigate the association between metal exposure and semen quality, and to assess the mediating role of seminal androgens between metal exposure and semen quality. We investigated the presence of 10 metals in semen and assessed their effect on semen quality in 1136 men recruited from a hospital in Shenzhen, China. Of these, 464 subjects were randomly selected for 4 androgens detection in semen. Cross-sectional associations between single/multiple metals, androgen levels and semen quality were explored by multivariable linear regressions. Mediation analysis was performed to detect the role of seminal androgens on the association between metal exposure and semen quality. Seminal selenium and iron were positively associated with both sperm concentration and total sperm count. Negative associations were observed between both manganese and zinc and sperm concentration, molybdenum and total sperm count, copper and sperm motility. Furthermore, we found significant dose-dependent relationships between both iron and selenium levels and dihydrotestosterone (DHT), arsenic levels and testosterone, as well as zinc and dehydroepiandrosterone. Mediation analysis indicated that higher seminal iron and selenium were associated with an increasing sperm concentration after controlling for DHT, with 10.32% and 12.89% of these associations were mediated by DHT, respectively. A similar mediation effect of DHT was observed in the associations between iron and selenium levels and total sperm count (13.39% and 21.57% mediation, respectively). Our findings suggested that the presence of selenium and iron in semen was beneficial to sperm concentration and total count. Seminal manganese, zinc, molybdenum and copper may be associated with reduced semen quality. The associations between seminal selenium and iron and sperm concentration and total count were partially explained by the concomitant variation of seminal DHT.
اظهر المزيد [+] اقل [-]Reproductive toxicity and estrogen activity in Japanese medaka (Oryzias latipes) exposed to environmentally relevant concentrations of octocrylene
2020
Yan, Saihong | Liang, Mengmeng | Chen, Rui | Hong, Xiangsheng | Zha, Jinmiao
The growing use of octocrylene (OC) in sunscreens has posed a great threat to aquatic organisms. In the present study, to assess its reproductive toxicity and mechanism, paired Japanese medaka (Oryzias latipes) (F0) were exposed to OC at nominal concentrations of 5, 50, and 500 μg/L for 28 d. Significant increases were observed in the gonadosomatic index (GSI) and hepatosomatic index (HSI) of F0 medaka at 500 μg/L OC (p < 0.05) without significant differences in fecundity. The fertility was significantly decreased at all treatments (p < 0.05). Significant increases in the percent of mature oocytes were observed at 5 and 500 μg/L OC, in which contrary to the percent of spermatozoa (p < 0.05). The plasma sex hormones and vitellogenin levels significantly increased in males at all treatments and in females at 50 and 500 μg/L OC (p < 0.05). In addition, the levels of fshβ and lhβ in the brains and the levels of fshr, lhr and cyp17α in the gonads were significantly upregulated in males at all treatments (p < 0.05), in line with those of ar, erα, erβ and cyp19β in the brains of male and female. The upregulation of vtg in male and female livers was observed only at 500 μg/L OC and upregulation of star and hsd3β was observed in testis at all treatments (p < 0.05). Continued exposure to OC significantly induced increases in the time to hatching, morphological abnormality rates, and cumulative death rates of F1 embryos, inconsistent with body length of F1 larvae (p < 0.05). Therefore, the responses of the exposed fish at the biochemical and molecular levels indicated reproductive toxicity and estrogenic activity of OC, providing insights into the mechanism of OC.
اظهر المزيد [+] اقل [-]Spermatogenesis disorder caused by T-2 toxin is associated with germ cell apoptosis mediated by oxidative stress
2019
Yang, Xu | Zhang, Xuliang | Zhang, Jian | Ji, Qiang | Huang, Wanyue | Zhang, Xueyan | Li, Yanfei
T-2 toxin is an unavoidable contaminant in human food, animal feeds, and agricultural products. T-2 toxin has been found to impair male reproductive function. But, few data is available that reveals the reproductive toxicity mechanism. In the study, male Kunming mice were orally administrated with T-2 toxin at the doses of 0, 0.5, 1 or 2 mg/kg body weight for 28 days. The body and reproductive organs weight, the concentration, malformation rate and ultrastructure of sperm in cauda epididymis were detected. Oxidative stress biomarkers and apoptosis were also measured in testes. Histological change of testes was performed by H&E and TUNEL staining. T-2 toxin down-regulated body and reproductive organs (testis, epididymis and seminal vesicle) weight, sperm concentration, increased sperm malformation rate and damaged the ultrastructure of sperm and structure of testes. T-2 toxin treatment increased the reactive oxygen species (ROS) and malondialdehyde content, while, decreased the total anti-oxidation capacity (T-AOC) and the superoxide dismutase activity in testes. T-2 toxin exposure increased the TUNEL-positive germ cells, the activities and mRNA expressions of caspase-3, caspase-8 and caspase-9, the mRNA expression of Bax, and inhibited the Bcl-2 mRNA expression. Furthermore, the expressions of caspase-3, caspase-8 caspase-9 and Bax were positively correlated with ROS level, but negatively correlated with T-AOC in testis. In summary, T-2 toxin caused spermatogenesis disorder associated with the germ cell apoptosis medicated by oxidative stress, impairing the male reproductive function.
اظهر المزيد [+] اقل [-]Long-term exposure of xenoestrogens with environmental relevant concentrations disrupted spermatogenesis of zebrafish through altering sex hormone balance, stimulating germ cell proliferation, meiosis and enhancing apoptosis
2019
Wang, Ya–Qin | Li, Ying–Wen | Chen, Qi–Liang | Liu, Zhi–Hao
Environmental estrogens are capable of interfering with the spermatogenesis and fertility of fish. However in natural waters, these chemicals are more likely to occur as a combination rather than a single stressor. Whether and how the mixture of xenoestrogens with environmental relevant concentrations may affect fish spermatogenesis remains largely unknown. In this study, male zebrafish adults were administered to 17alpha-ethinylestradiol (EE2) and a mixture of xenoestrogens (Mix (E2, EE2, DES, 4-t-OP, 4-NP and BPA)), with the estrogenic potency equivalent to EE2. After a 60-day exposures, elevated mRNA levels of vitellogenin 1 (vtg1) and estrogen receptor 1 (esr1) in the liver of fish in both treated groups were observed. Moreover, the plasma level of E2 declined significantly in the Mix group and the ratio of 11-KT/E2 was significantly elevated in both treated groups. Consistently, the mRNA level of P450 side-chain cleavage (scc) in the EE2 group and ovarian type aromatase (cyp19a1a) in the Mix group was significantly suppressed. In addition, decreased gonadosomatic index and sperm count in the fish of Mix group were present. Furthermore, increased number of the proliferating germ cells (such as spermatogonia and spermatocytes) was observed in the fish of both groups, suggesting a stimulated germ cell proliferation and meiosis. Accordingly, both exposures significantly up-regulated the mRNA levels of genes in mitosis (cyclinb1) and meiosis (cyp26a1 in EE2 group, aldh1a2, cyp26a1, sycp3 and spo11 in Mix). In addition, decreased number of spermatozoa and increased number of TUNEL-positive signals were present in the testis of fish in the Mix group, indicating an enhanced apoptosis. Further analyses demonstrated the significant elevated expressions of tnfrsf1a and the ratio of tnfrsf1a/tnfrsf1b in the Mix group, suggesting an elevated apoptosis in the testis of fish in the Mix group via extrinsic pathway. The present study greatly extends our understanding of the underlying mechanisms of the reproductive toxicity of xenoestrogens on fish.
اظهر المزيد [+] اقل [-]Assessment of sperm DNA integrity within the Palaemon longirostris (H. Milne-Edwards, 1837) population of the Seine estuary
2019
Erraud, Alexandre | Bonnard, Marc | Geffard, Olivier | Chaumot, Arnaud | Duflot, Aurélie | Geffard, Alain | Forget-Leray, Joëlle | Xuereb, Benoit
The interpretation of biomarkers in natura should be based on a referential of expected values in uncontaminated conditions. Nevertheless, to build a reference data set of biomarker responses in estuarine areas, which receive chronic pollution loads due to their transition position between continent and sea, is impossible. In this context, the aim of the present work was to propose the use of laboratory recovery period to define a baseline for the measurement of sperm DNA damage by Comet assay in the estuarine prawn Palaemon longirostris. For that, sperm DNA integrity was observed after both a passive (i.e. 20 days in a clean environment) and an active (i.e. forced renewal of spermatophores) recovery of wild P. longirostris specimens from the Seine estuary, in laboratory conditions. Then, the levels of sperm DNA damage recorded within the P. longirostris population of the Seine estuary, during six campaigns of sampling from April 2015 to October 2017, have been interpreted according to the defined threshold values. The results showed a persistence in the level of DNA damage after 20-day in clean environment with the passive recovery. This strategy was inconclusive to reach a baseline level but it revealed the lack of DNA repair mechanisms. For the active recovery, a decrease of 54% of the level of DNA damage has been observed after the first renewal of spermatophores and this level stabilized after the second renewal. On the basis of this second strategy, we defined a mean basal value of sperm DNA damage of 54.9 A.U. and a maximum threshold of 69.7 A.U. (i.e. 95 %CI). The analysis of the results using the reference value highlighted significant abnormal sperm DNA damage within the native population of P. longirostris from the Seine estuary on all stations during the six-sampling campaigns.
اظهر المزيد [+] اقل [-]Male exposure to bisphenol a impairs spermatogenesis and triggers histone hyperacetylation in zebrafish testes
2019
González-Rojo, S. | Lombó, M. | Fernández-Díez, C. | Herráez, M.P.
Bisphenol A (BPA) is an endocrine disruptor whose ubiquitous presence in the environment has been related with impairment of male reproduction. BPA can cause both transcriptomic and epigenetic changes during spermatogenesis. To evaluate the potential effects of male exposure to BPA, adult zebrafish males were exposed during spermatogenesis to doses of 100 and 2000 μg/L, which were reported in contaminated water bodies and higher than those allowed for human consumption. Fertilization capacity and survival at hatching were analysed after mating with untreated females. Spermatogenic progress was analysed through a morphometrical study of testes and apoptosis was evaluated by TUNEL assay. Testicular gene expression was evaluated by RT-qPCR and epigenetics by using ELISA and immunocytochemistry. In vitro studies were performed to investigate the role of Gper. Chromatin fragmentation and the presence of transcripts were also evaluated in ejaculated sperm. Results on testes from males treated with the highest dose showed a significant decrease in spermatocytes, an increase in apoptosis, a downregulation of ccnb1 and sycp3, all of which point to an alteration of spermatogenesis and to meiotic arrest and an upregulation of gper1 and esrrga receptors. Additionally, BPA at 2000 μg/L caused missregulation of epigenetic remodelling enzymes transcripts in testes and promoted DNA hypermethylation and H3K27me3 demethylation. BPA also triggered an increase in histone acetyltransferase activity, which led to hyperacetylation of histones (H3K9ac, H3K14ac, H4K12ac). In vitro reversion of histone acetylation changes using a specific GPER antagonist, G-36, suggested this receptor as mediator of histone hyperacetylation. Males treated with the lower dose only showed an increase in some histone acetylation marks (H3K14ac, H4K12ac) but their progeny displayed very limited survival at hatching, revealing the deleterious effects of unbalanced paternal epigenetic information. Furthermore, the highest dose of BPA led to chromatin fragmentation, promoting direct reproductive effects, which are incompatible with embryo development.
اظهر المزيد [+] اقل [-]Seasonal variation of semen parameters correlates with environmental temperature and air pollution: A big data analysis over 6 years
2018
Santi, Daniele | Magnani, Elisa | Michelangeli, Marco | Grassi, Roberto | Vecchi, Barbara | Pedroni, Gioia | Roli, Laura | De Santis, Maria Cristina | Baraldi, Enrica | Setti, Monica | Trenti, Tommaso | Simoni, Manuela
Male fertility is progressively declining in many developed countries, but the relationship between male infertility and environmental factors is still unclear.To assess the influence of environmental temperature and air pollution on semen parameters, using a big-data approach.A big data analysis of parameters related to 5131 men, living in a province of Northern Italy and undergoing semen analyses between January 2010 and March 2016 was performed. Ambient temperature was recorded on the day of analysis and the 90 days prior to the analysis and the average value of particulate matter (PM) and NO2 in the year of the test. All data were acquired by geocoding patients residential address. A data warehouse containing 990,904,591 data was generated and analysed by multiple regressions.5573 semen analyses were collected. Both maximum and minimum temperatures registered on the day of collection were inversely related to total sperm number (p < .001), non-progressive motility (NPrM) (p < .005) and normal forms (p < .001). Results were confirmed considering temperature in the 30 and 60 days before collection, but not in the 90 days before collection. Total sperm number was lower in summer/autumn (p < .001) and was inversely related with daylight duration (p < .001). PM10 and PM2.5 were inversely related to PrM (p < .001 and p < .005) and abnormal forms (p < .001).This is the first evaluation of the relationship between male fertility-related parameters and environment using a big-data approach. A seasonal change in semen parameters was found, with a fluctuation related to both temperature and daylight duration. A negative correlation between air pollution and semen quality is suggested. Such seasonal and environmental associations should be considered when assessing changes of male fertility-related parameters over time.
اظهر المزيد [+] اقل [-]