خيارات البحث
النتائج 1 - 2 من 2
Subcellular distribution of cadmium in a novel potential aquatic hyperaccumulator – Microsorum pteropus
2019
Lan, Xin-Yu | Yan, Yun-Yun | Yang, Bin | Li, Xin-Yuan | Xu, Fu-Liu
Microsorum pteropus is a novel potential Cd (cadmium) aquatic hyperaccumulator. In the present study, hydroponic experiments were conducted to assess the accumulation and subcellular distribution of Cd in the root, stem and leaf of M. pteropus. SEM (scanning electron microscopy) – EDX (energy dispersive X-ray fluorescence spectrometer) and TEM (transmission electron microscopy) were used to observe the ultrastructure of different tissues under 500 μM Cd exposure. After exposure to 500 μM Cd for 7 days, the root, stem and leaf of M. pteropus can accumulate to be > 400 mg/kg Cd in dry mass with no significant influence on the growth. In the root and leaf of M. pteropus, the Cd was more likely to store in the cell wall fraction. However, Cd in the stem was mainly stored in both the cell wall fraction and the cytoplasm fraction. Under SEM observation and EDX detection, 1) Cd was found to be sequestrated in the epidermis or chelated in the root cells, 2) no significant deposit spots were observed in the stem, 3) Cd was found in the trichome of the leaf, and the sporangium was not damaged. TEM observations revealed 1) possible Cd precipitations in the root cell and 2) no significant ultrastructure variation in the stem, and 3) the chloroplast retained its structure and was not affected by the Cd. M. pteropus showed great capacity for Cd accumulation without influencing growth. In addition, the ultrastructure of all the tissues was not damaged by the Cd. M. pteropus showed a great potential in phytoremediation in heavy metal polluted water solutions, and may provide new directions for the study of resistance mechanisms of aquatic hyperaccumulators.
اظهر المزيد [+] اقل [-]Using Citrus aurantifolia essential oil for the potential biocontrol of Colocasia esculenta (taro) leaf blight caused by Phytophthora colocasiae
2018
Tchameni, Séverin Nguemezi | Mbiakeu, Staelle Njamou | Sameza, Modeste Lambert | Jazet, Pierre Michel Dongmo | Tchoumbougnang, François
The aim of this work was to evaluate the antimicrobial activities of leaves and epicarp of Citrus aurantifolia essential oil against Phytophthora colocasiae, the causative agent of taro leaf blight. Oils were extracted by hydrodistillation, and their chemical composition was determined by gas chromatography and gas chromatography coupled with mass spectrometry. Antimicrobial activities of oils were tested in vitro against mycelium growth and sporangium production. In situ tests were done on healthy taro leaves, and the necrosis symptoms were evaluated. Results showed that the essential oil extraction yields from leaves and epicarp were 0.61 and 0.36%, respectively. Limonene (48.96%), bornyl acetate (14.18%), geraniol (10.53%), geranial (3.93%), and myrcene (3.14%) were the main components in leaf oil, while limonene (59.09%), cis-hydrate sabinene (7.53%), geranial (5.61%), myrtenol (5.02%), and terpinen-4-ol (3.48%) were the main components in epicarp oil. Both oils exhibited antimicrobial activities with total inhibition of the mycelium growth at 500 and 900 ppm for leaf and epicarp, respectively. The highest inhibitory concentration of sporangium production was 400 (72.84%) and 800 ppm (80.65%) for leaf and epicarp oil, respectively. For the standard fungicide (metalaxyl), the total inhibition value of mycelial growth and sporangium production was 750 ppm. In situ tests showed that, at 5000 ppm, total inhibition (100%) was obtained for a preventive test, while 50% of the inhibition was observed for a curative test when leaf oil was applied. When epicarp essential oil was applied at 5000 ppm, 47.5 and 16.66% of the reduction of leaf necrosis were observed for the preventive and curative test, respectively. There were positive correlations between both the oil concentration and the reduction of necrosis caused by P. colocasiae. These findings suggest that the C. aurantifolia essential oil could serve as an eco-friendly biocontrol for the management of taro leaf blight.
اظهر المزيد [+] اقل [-]