خيارات البحث
النتائج 1 - 10 من 420
Effect of Barley and Oat Plants on Phytoremediation of Petroleum Polluted Soils
2020
Barati, M. | Safarzadeh, S. | Mowla, D. | Bakhtiari, F.
Total Petroleum Hydrocarbons (TPHs) are one of the most dangerousorganic contaminants in the environment. Therefore, the remediation of the oilcontaminatedsoil is necessary. The growth of barley and oat plant was studied in thecontaminated soils (4, 6, 8% TPHs) during 5 months. Plant height, wet and dry weight ofshoots and roots of both plants were measured. Results showed that oat and barley height,wet and dry weight of shoots and roots decreased with increasing contamination levels.Regardless of the plants species, the highest rate of TPH reduction was observed in soilwith 4% contamination and decreased with increasing the contamination level. The TPHsconcentration in the rhizosphere of barley and oat decreased by 29.66 and 24.04% at the6% TPHs level and by 21.24 and 17.48% at the 8% TPHs level, respectively. Cultivationof barley and oat plants significantly accelerated the biodegradation of hydrocarbons andreduced TPHs content in soil as compared to unplanted soil.
اظهر المزيد [+] اقل [-]Risk Assessment and Effect of Different Factors on Nitrate in Groundwater Resources of Jiroft County
2018
Najaf Tarqi, M. | Askari Dolatabad, Y. | Vahidi, H.
Nitrate is a major contributor to water contamination, which can affect humans' and animals' health. Due to increased sewage production, growth of agricultural activities, and development of urbanization, recent years have seen an increase of Nitrate in water resources. Drinking water resources in both rural and urban areas of Jiroft City are supplied by water wells, scattered throughout the region. Thus the present research analyses the Nitrate pollution of 31 drinking water wells in summer and winter of 2016, in the urban area of Jiroft City and by means of GIS as well as statistical analysis, presents the results as zoning and survey maps. It also studies and evaluates the effect of rainfall and soil type on the amount of Nitrate. Results from statistical analyses show that the amount of water pollution to Nitrate is independent from the type of land use as well as the soil type. Furthermore, statistical results show that the amount of Nitrate in the wells under test is affected by precipitation, being higher in the winter. Therefore, considering the agricultural density in this area and the untapped use of nitrogen fertilizers, it is necessary to take into account the use of chemical fertilizers for proper management, scientific and practical control, and maintenance of the wells' health safety.
اظهر المزيد [+] اقل [-]Effects of ambient rain chemistry on field-grown radish - an exploratory approach by multiple linear regression.
1992
Kostka Rick R. | Manning W.J.
Quantifying source and dynamics of acidic pollution in a coastal acid sulphate soil area
2013
Phong, N.D. | To Phuc Tuong | Phu, N.D. | Nang, N.D. | Hoanh, Chu Thai
The in-depth knowledge on management and reducing annual acidic pollution is important for improving the sustainable livelihood of people living in areas with acid sulphate soils (ASS). This study involved a long-term (2001-2006), large-scale canal water quality monitoring network (87 locations) and a field experiment at nine sites to quantify the dynamic variability of acidic pollution and its source in a coastal area with ASS in the Mekong River Delta of Vietnam. Widespread acidic pollution (pH <5) of surface water occurred at the beginning of the rainy season, while pH of the canal water remained high (7-8) at the end of the rainy season and during the dry season. The study identified canal embankment deposits, made of ASS spoils from canal dredging/excavation, as the main source of acidic pollution in the surrounding canal network. The findings suggested that there was a linkage between the amount of acidic loads into canal networks and the age of the embankment deposits. The most acute pollution (pH ~ 3) occurred in canals with sluggish tidal water flow, at 1-2 years after the deposition of excavated spoils onto the embankments in ASS. The amount of acidic loads transferred to the canal networks could be quantified from environmental parameters, including cumulative rainfall, soil type and age of embankment deposits. The study implied that dredging/excavation of canals in ASS areas must be carried out judiciously as these activities may increase the source of acidic pollution to the surrounding water bodies.
اظهر المزيد [+] اقل [-]Exposure of construction workers to hazardous emissions in highway rehabilitation projects measured with low-cost sensors
2022
Blaauw, Sheldon A. | Maina, James W. | O'Connell, Johan
Construction workers on highway rehabilitation projects can be exposed to a combination of traffic- and construction-related emissions. To assess the personal exposure a worker experiences, a portable battery-operated Air Quality Device (AQD) was utilised to measure emissions during normal construction operations of a major road rehabilitation project. Emissions measured were nitrogen dioxide (NO₂), Total Volatile Organic Compounds (TVOCs) and Particulate Matter (PM₁₀, PM₂.₅, and PM₁). The objective of the paper is to document the hazardous emissions that construction workers may be exposed to and allow for a basis of informed decision making to mitigate the risks of a road construction project. Most critically, this article is designed to raise awareness of the potential impact to a worker's wellbeing as well as highlight the need for further research. Through statistical analysis, asphalt paving was identified as the most hazardous activity in terms of exposure relative to other activities. This activity was further assessed using discrete-time Markov chain Monte Carlo simulations with results indicating a high probability that workers may be exposed to greater hazardous emission concentrations than measured. Limiting the distance to the source of emissions, large-scale use of warm-mix asphalt and reducing the idling times of construction vehicles were identified as practical mitigation measures to reduce exposure and aid in achieving zero-harm objectives. Finally, it is found that males are more susceptible to long-term implications of hazardous emission inhalation and should be more aware if the scenarios they might work in expose them to this.
اظهر المزيد [+] اقل [-]The geochemical and mineralogical controls on the release characteristics of potentially toxic elements from lead/zinc (Pb/Zn) mine tailings
2022
Chen, Tao | Wen, Xiao–Cui | Zhang, Li–Juan | Tu, Shu–Cheng | Zhang, Jun–Hao | Sun, Ruo–Nan | Yan, Bo
Large quantities of lead/zinc (Pb/Zn) mine tailings were deposited at tailings impoundments without proper management, which have posed considerable risks to the local ecosystem and residents in mining areas worldwide. Therefore, the geochemical behaviors of potentially toxic elements (PTEs) in tailings were in–depth investigated in this study by a coupled use of batch kinetic tests, statistical analysis and mineralogical characterization. The results indicated that among these studied PTEs, Cd concentration fluctuated within a wide range of 0.83–6.91 mg/kg, and showed the highest spatial heterogeneity. The mean Cd concentrations generally increased with depth. Cd were mainly partitioned in the exchangeable and carbonate fractions. The release potential of PTEs from tailings was ranged as: Cd > Mn > Zn > Pb > As, Cd > Pb > Zn > Mn > As and Cd > Pb > Mn > Zn > As, respectively, under the assumed environmental scenarios, i.e. acid rain, vegetation restoration, human gastrointestinal digestion. The results from mineralogical characterization indicated that quartz, sericite, calcite and pyrite were typical minerals, cumulatively accounting for over 80% of the tailings. Sulfides (arsenopyrite, galena, and sphalerite), carbonates (calcite, dolomite, cerussite and kutnahorite), oxides (limonite) were identified as the most relevant PTEs–bearing phases, which significantly contributed to PTEs release from tailings. A combined result of statistical, geochemical and mineralogical approaches would be provided valuable information for the alteration characteristics and contaminant release of Pb/Zn mine tailings.
اظهر المزيد [+] اقل [-]Biological effects of the antihypertensive losartan under different ocean acidification scenarios
2022
Pusceddu, F.H. | Guimarães, M.M. | Lopes, L.O. | Souza, L.S. | Cortez, F.S. | Pereira, C.D.S. | Choueri, R.B. | César, A.
Since the last decade, several studies have reported the presence and effects of pharmaceutical residues in the marine environment, especially those of the antihypertensive class, such as losartan. However, there is little knowledge about the physiological effects of losartan in marine invertebrates regarding its behavior under possible coastal ocean acidification scenarios. The objective of this study was to evaluate biological effects on marine organisms at different levels of the biological organization caused by the compound losartan in water and sediment under coastal ocean acidification scenarios. Water and sediment samples were collected at five sites around the Santos Submarine Sewage outfall (SSO) and two sites around the Guarujá Submarine Sewage Outfall (GSO). Losartan was found in concentrations ranging from <LOD to 7.63 ng/L in water and from <LOQ to 3.10 ng/g in sediments. Statistical analysis showed interactive effects pH and losartan on the toxicity results. The water toxicity test with Echinometra lucunter embryos/larvae showed LOECs 50–100 mg/L, with values decreasing as the pH decreased. In the sediment assays, LOEC value for sea urchin embryo-larval development was 1.0 μg/g for all tested pHs. Regarding the lysosomal membrane stability assays with adult bivalves, a LOEC of 3000 ng/L was found for Perna perna in water exposure (both at pH 8.0 and 7.6). Effects for Mytella guyanensis were observed at environmentally relevant concentrations in sediment (LOEC = 3 ng/g at pH 8.0 and 7.6). This study demonstrated that coastal ocean acidification by itself causes effects on marine invertebrates, but can also increase the negative effects of losartan in waterborne exposure. There is a need to deepen the studies on the ecotoxicity of pharmaceutical residues and acidification of the marine environment.
اظهر المزيد [+] اقل [-]Evaluation of the acute toxic effects of crude oil on intertidal mudskipper (Boleophthalmus pectinirostris) based on antioxidant enzyme activity and the integrated biomarker response
2022
Pan, Yuying | Tian, Lina | Zhao, Qiaoling | Tao, Zhen | Yang, Jinsheng | Zhou, Youlin | Cao, Rui | Zhang, Guangxu | Wu, Wenyu
With the development of marine oil industry, oil spill accidents will inevitably occur, further polluting the intertidal zone and causing biological poisoning. The muddy intertidal zone and Boleophthalmus pectinirostris were selected as the research objects to conduct indoor acute exposure experiments within 48 h of crude oil pollution. Statistical analysis was used to reveal the activity changes of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) in the gills and liver of mudskipper. Then, integrated biomarker response (IBR) indicators were established to comprehensively evaluate the biological toxicity. The results showed that the activities of SOD, CAT and GST in livers were higher than those in gills, and the maximum induction multipliers of SOD, CAT and GPx in livers appeared earlier than those in gills. Both SOD and GPx activities were induced at low pollutant concentrations and inhibited at high pollutant concentrations. For the dose-effect, the change trends of CAT and SOD were roughly inversed. There was substrate competition between GPx and CAT, with opposite trends over time. The activating mechanism of GST was similar to that of GPx, and the activation time was earlier than that of GPx. In terms of dose-effect trends, the IBR showed that the antioxidant enzymes activities in biological tissues were induced by low and inhibited by high pollutant concentrations. Overall, SOD and GPx in gills and CAT and GST in livers of the mudskippers were suitable as representative markers to comprehensively analyze and evaluate the biotoxicity effects of oil pollution in the intertidal zone. The star plots and IBR values obtained after data standardization were consistent with the enzyme activity differences, which can be used as valid supplementary indexes for biotoxicity evaluation. These research findings provide theoretical support for early indicators of biological toxicity after crude oil pollution in intertidal zones.
اظهر المزيد [+] اقل [-]Assessing correlations between short-term exposure to atmospheric pollutants and COVID-19 spread in all Italian territorial areas
2021
Accarino, Gabriele | Lorenzetti, Stefano | Aloisio, Giovanni
The spread of SARS-CoV-2, the beta coronavirus responsible for the current pneumonia pandemic outbreak, has been speculated to be linked to short-term and long-term atmospheric pollutants exposure. The present work has been aimed at analyzing the atmospheric pollutants concentrations (PM₁₀, PM₂.₅, NO₂) and spatio-temporal distribution of cases and deaths (specifically incidence, mortality and lethality rates) across the whole Italian national territory, down to the level of each individual territorial area, with the goal of checking any potential short-term correlation between these two phenomena. The data analysis has been limited to the first quarter of 2020 to reduce the lockdown-dependent biased effects on the atmospheric pollutant levels as much as possible. The analysis looked at non-linear, monotonic correlations using the Spearman non-parametric correlation index. The statistical significance of the Spearman correlations has also been evaluated. The results of the statistical analysis suggest the hypothesis of a moderate-to-strong correlation between the number of days exceeding the annual regulatory limits of PM₁₀, PM₂.₅ and NO₂ atmospheric pollutants and COVID-19 incidence, mortality and lethality rates for all the 107 territorial areas in Italy. A weak-to-moderate correlation seems to exist when considering the 36 territorial areas in four of the most affected regions (Lombardy, Piedmont, Emilia-Romagna and Veneto). Overall, PM₁₀ and PM₂.₅ showed a higher non-linear correlation than NO₂ with incidence, mortality and lethality rates. As to particulate matters, PM₁₀ profile has been compared with the incidence rate variation that occurred in three of the most affected territorial areas in Northern Italy (i.e., Milan, Brescia, and Bergamo). All areas showed a similar PM₁₀ time trend but a different incidence rate variation, that was less severe in Milan compared with Brescia and Bergamo.
اظهر المزيد [+] اقل [-]Effects of algae proliferation and density current on the vertical distribution of odor compounds in drinking water reservoirs in summer
2021
Wu, Tianhao | Zhu, Guangwei | Zhu, Mengyuan | Xu, Hai | Yang, Jun | Zhao, Xianfu
Reservoirs are an important type of drinking water source for megacities, while lots of reservoirs are threatened by odor problems during certain seasons. The influencing factors of odor compounds in reservoirs are still unclear. During August 2019, a nationwide survey investigating the distribution of odor compounds in reservoirs used as drinking water sources was conducted on seven reservoirs. 2-methylisoborneol (2-MIB) and geosmin were detected in almost every reservoir, and some odor compound concentrations even exceeded the odor threshold concentration. The average concentration of 2-MIB was 2.68 ng/L, and geosmin was 3.63 ng/L. The average chlorophyll a concentration was 8.25 μg/L. The dominant genera of phytoplankton in these reservoirs belonged to cyanobacteria and diatom. Statistical analysis showed that odor compound concentration was significantly related to the chlorophyll a concentration and indicated that the odor compounds mainly came from phytoplankton. The concentration of odor compounds in the euphotic zone was significantly related to phytoplankton species and biomass. Therefore, the odor compound concentrations in the subsurface chlorophyll maxima layer was generally higher than in the surface layer. However, the odor compounds in the hypolimnion layer were related to the density current. This research suggests that both phytoplankton proliferation events and heavy storm events are important risk factors increasing odor compounds in reservoirs. Control of algal bloom, in-situ profile monitoring system and depth-adjustable pumping system will greatly reduce the risk of odor problems in reservoirs using as water supplies for large cities.
اظهر المزيد [+] اقل [-]