خيارات البحث
النتائج 1 - 10 من 59
The contribution of ammonia emissions from agriculture to the deposition of acidifying and eutrophying compounds onto forests.
1989
Draaijers G.P.J. | Ivens W.P.M.F. | Bos M.M. | Bleuten W.
Etude des pluies recueillies en trois points a proximite de Besancon.
1986
Dole S. | Guyetant R. | Martin D. | Remy F. | Reyle R. | Rouault J.Y. | Valero L. | Vidonne A.
Unravelling biogeochemical drivers of methylmercury production in an Arctic fen soil and a bog soil
2022
Zhang, Lijie | Philben, Michael | Taş, Neslihan | Johs, Alexander | Yang, Ziming | Wullschleger, Stan D. | Graham, David E. | Pierce, Eric M. | Gu, Baohua
Arctic tundra soils store a globally significant amount of mercury (Hg), which could be transformed to the neurotoxic methylmercury (MeHg) upon warming and thus poses serious threats to the Arctic ecosystem. However, our knowledge of the biogeochemical drivers of MeHg production is limited in these soils. Using substrate addition (acetate and sulfate) and selective microbial inhibition approaches, we investigated the geochemical drivers and dominant microbial methylators in 60-day microcosm incubations with two tundra soils: a circumneutral fen soil and an acidic bog soil, collected near Nome, Alaska, United States. Results showed that increasing acetate concentration had negligible influences on MeHg production in both soils. However, inhibition of sulfate-reducing bacteria (SRB) completely stalled MeHg production in the fen soil in the first 15 days, whereas addition of sulfate in the low-sulfate bog soil increased MeHg production by 5-fold, suggesting prominent roles of SRB in Hg(II) methylation. Without the addition of sulfate in the bog soil or when sulfate was depleted in the fen soil (after 15 days), both SRB and methanogens contributed to MeHg production. Analysis of microbial community composition confirmed the presence of several phyla known to harbor microorganisms associated with Hg(II) methylation in the soils. The observations suggest that SRB and methanogens were mainly responsible for Hg(II) methylation in these tundra soils, although their relative contributions depended on the availability of sulfate and possibly syntrophic metabolisms between SRB and methanogens.
اظهر المزيد [+] اقل [-]The abatement of acid rain in Guizhou province, southwestern China: Implication from sulfur and oxygen isotopes
2020
Zelong Yan, | Xiaokun Han, | Lang, Yunchao | Guo, Qinjun | Li, Siliang
The high frequency of acid rain in southern China has captured public and official concern since 1980s. Subsequently, gas emission reduction measures have been implemented to improve the air quality. Variations in SO₂ emission intensities can influence the sulfur and oxygen isotopic compositions of sulfate in rainwater, since atmospheric sulfate is mainly formed via the oxidation of sulfur gases from natural and anthropogenic sources. To evaluate the impacts of emission reduction measures on atmospheric sulfate, the seasonal and long-term trends in stable isotopic compositions of sulfate in rainwater in Guizhou province, southwestern China have been investigated based on rainwater samples collected from June 2016 to June 2018 and literature investigation (2000–2010).The results reveal that coal combustion remains a major contributor to sulfate in rainwater, although its SO₂ emission has significantly decreased over the past two decades. The δ³⁴Sₛᵤₗfₐₜₑ and δ¹⁸Oₛᵤₗfₐₜₑ values in rainwater are negatively correlated and have significant seasonal changes. The seasonality in δ³⁴Sₛᵤₗfₐₜₑ has been interpreted as due to the changes in contributions of dimethyl sulfide and coal combustion, while the seasonal pattern of δ¹⁸Oₛᵤₗfₐₜₑ is consistent with that of δ¹⁸Owₐₜₑᵣ values, indicating sulfate in rainwater is mainly formed by heterogeneous oxidation of SO₂. Combined with the data from previous studies (Xiao and Liu, 2002; Liu, 2007; Xiao et al., 2009; Xiao et al., 2014), we found that the volume weighted mean δ³⁴S values of sulfate in rainwater in Guizhou province show a marked increase between 2001 and 2018, indicating that the ³⁴S-depleted SO₂ emission from coal combustion has declined during this period. Furthermore, the synchronous changes in δ³⁴S values, sulfate concentration and pH values of rainwater suggest that the frequency of acid rain in Guizhou province has dropped over the past two decades, which is likely to result from the emission reduction measures taken in Guizhou province.
اظهر المزيد [+] اقل [-]NOx promotion of SO2 conversion to sulfate: An important mechanism for the occurrence of heavy haze during winter in Beijing
2018
Ma, Jinzhu | Chu, Biwu | Liu, Jun | Liu, Yongchun | Zhang, Hongxing | He, Hong
In this study, concentrations of NOₓ, SO₂, O₃ and fine particles (PM₂.₅) were measured at three monitoring stations in Beijing during 2015. For extreme haze episodes during 25 Nov. - 3 Dec. 2015, observation data confirmed that high concentrations of NOₓ promoted the conversion of SO₂ to sulfate. Annual data confirmed that this is an important mechanism for the occurrence of heavy haze during winter in Beijing. Furthermore, in situ perturbation experiments in a potential aerosol mass (PAM) reactor were carried out at Shengtaizhongxin (STZX) station during both clean and polluted days. The concentrations of SO₄²⁻, NH₄⁺, NO₃⁻ and organic aerosol were positively related to the concentration of added NO₂. These results provide definitive evidence that NO₂ can promote the conversion of SO₂ to sulfate. At the same time, we found that NO₂ can promote the formation of NH₄⁺ and organic compounds in the aerosols. Our results illustrate that strengthened controls of nitrogen oxides is a key step in reducing the fine particles level in China.
اظهر المزيد [+] اقل [-]Effects of selenite on Microcystis aeruginosa: Growth, microcystin production and its relationship to toxicity under hypersalinity and copper sulfate stresses
2017
Zhou, Chuanqi | Huang, Jung-Chen | Liu, Fang | He, Shengbing | Zhou, Weili
Se laden freshwater algae that enter the Salton Sea with river water pose ecorisks to wildlife in the lake by transferring selenium (Se) to higher trophic levels. The aim of this study was to investigate impacts of Se on Microcystis aeruginosa, widely distributed in freshwater bodies, and its relationship with toxicity, such as microcystins and Se residues. When supplied with selenite, the 96 h-IC50 was calculated 2.60 mg Se/L. However, these inhibitory effects did not extend to microcystin production, and the extracellular fraction significantly increased with selenite as well as sulfate. As M. aeruginosa assimilated selenite very efficiently, 97% of the removed Se was through accumulation, compared to 3% via volatilization, raising a concern about ecotoxicity caused by the remaining Se in the algae. The XAS analysis suggests the dominant Se species accumulated in the algal cells was elemental Se (81%), which is relatively nonbioavailable to aquatic organisms. We further investigated the potential fate of Se carried into the Salton Sea by M. aeruginosa with river water. Under hypersalinity stress, the biomass Se and intracellular microcystins were released and reduced by 47% and 74%, respectively, resulting in the increasing levels of Se and microcystins in the water column. CuSO4 was then applied as an algaecide to prevent M. aeruginosa from entering the lake. The results indicate a similar response to that under hypersalinity stress: the volatilization process was blocked and the Se and microcystins were released from the damaged algal cells in the presence of CuSO4, further raising toxicity levels by 8% and 60%, respectively, in the water column within 24 h. Overall, the coexistence of selenite and M. aeruginosa in river waters might negatively impact aquatic ecosystems of the Salton Sea and further research is required on how to harvest Se from M. aeruginosa to protect local wildlife.
اظهر المزيد [+] اقل [-]Development of atmospheric acid deposition in China from the 1990s to the 2010s
2017
Yu, Haili | He, Nianpeng | Wang, Qiufeng | Zhu, Jianxing | Gao, Yang | Zhang, Yunhai | Jia, Yanlong | Yu, Guirui
Atmospheric acid deposition is a global environmental issue. China has been experiencing serious acid deposition, which is anticipated to become more severe with the country's economic development and increasing consumption of fossil fuels in recent decades. We explored the spatiotemporal variations of acid deposition (wet acid deposition) and its influencing factors by collecting nationwide data on pH and concentrations of sulfate (SO4²⁻) and nitrate (NO3⁻) in precipitation between 1980 and 2014 in China. Our results showed that average precipitation pH values were 4.59 and 4.70 in the 1990s and 2010s, respectively, suggesting that precipitation acid deposition in China has not seriously worsened. Average SO4²⁻ deposition declined from 40.54 to 34.87 kg S ha⁻¹ yr⁻¹ but average NO3⁻ deposition increased from 4.44 to 7.73 kg N ha⁻¹ yr⁻¹. Specifically, the area of severe precipitation acid deposition in southern China has shrunk to some extent as a result of controlling the pollutant emissions; but the area of moderate precipitation acid deposition has expanded in northern China, associated with rapid industrial and transportation development. Furthermore, we found significant positive correlations between precipitation acid deposition, energy consumption, and rainfall. Our findings provide a relatively comprehensive evaluation of the spatiotemporal dynamics of precipitation acid deposition in China over past three decades, and confirm the idea that strategies implemented to save energy and control pollutant emissions in China have been effective in alleviating precipitation acid deposition. These findings might be used to demonstrate how developing countries could achieve economic development and environmental protection through the implementation of advanced technologies to reduce pollutant emissions.
اظهر المزيد [+] اقل [-]Multiple stable isotopes and geochemical approaches to elucidate groundwater salinity and contamination in the critical coastal zone: A case from the Bou-areg and Gareb aquifers (North-Eastern Morocco)
2022
Elmeknassi, Malak | Bouchaou, Lhoussaine | El Mandour, Abdennabi | Elgettafi, Mohammed | Himi, Mahjoub | Casas, Albert
Mediterranean areas are characterized by complex hydrogeological systems, where water resources are faced with several issues such as salinity and pollution. Fifty-one water samples were gathered from the Bou-areg coastal and the Gareb aquifers to evaluate the source of water salinity and to reveal the processes of the different sources of pollution using a variety of chemical and isotopic indicators (δ²H–H2O, δ¹⁸O–H2O, δ³⁴S–SO4, and δ¹⁸O–SO4). The results of the hydrochemical analysis of water samples show that the order of dominated elements is Cl⁻ > HCO₃⁻ > SO4₂⁻ > NO₃⁻ and Na⁺ > Ca²⁺ > Mg²⁺ > K⁺ and evidenced extremely high salinity levels (EC up to 22000 μS/cm). All samples exceeded the WHO drinking water guidelines, making them unfit for human consumption. Ion ratio diagrams, isotopic results, and graphical comparing indicate that the mineralization of groundwater in the area, is controlled by carbonate dissolution, evaporite dissolution, ion exchange, and sewage invasion. The return of irrigation water plays a significant role as well in the groundwater recharge and its mineralization by fertilizers mainly. Evaporites (Gypsum), sewage, and fertilizers constitute the main sources of sulfates in the investigated water resources. These scientific results will be an added value for decision-makers to more improve the sustainable management of groundwater in water-stressed regions. The use of chemical and isotopic tracers once again shows their relevance in such zones where systematic monitoring is lacking.
اظهر المزيد [+] اقل [-]Tracing riverine sulfate source in an agricultural watershed: Constraints from stable isotopes
2021
Liu, Jinke | Han, Guilin
The sulfate pollution in water environment gains more and more concerns in recent years. The discharge of domestic, municipal, and industrial wastewaters increases the riverine sulfate concentrations, which may cause local health and ecological problems. To better understand the sources of sulfate, this study collected water samples in a typical agricultural watershed in East Thailand. The source apportionment of sulfide was conducted by using stable isotopes and receptor models. The δ³⁴SSO₄ value of river water varied from 1.2‰ to 16.4‰, with a median value of 8.9‰. The hydrochemical data indicated that the chemical compositions of Mun river water were affected by the anthropogenic inputs and natural processes such as halite dissolution, carbonate, and silicate weathering. The positive matrix factorization (PMF) model was not suitable to trace source of riverine sulfate, because the meaning of the extracted factors seems to be vague. Based on the elemental ratio and isotopic composition, the inverse model yielded the relative contribution of sulfide oxidation (approximately 46.5%), anthropogenic input (approximately 41.5%), and gypsum dissolution (approximately 12%) to sulfate in Mun river water. This study indicates that the selection of models for source apportionment should be careful. The large contribution of anthropogenic inputs calls an urgent concern of the Thai government to establish effective management strategies in the Mun River basin.
اظهر المزيد [+] اقل [-]Tracing sulfate origin and transformation in an area with multiple sources of pollution in northern China by using environmental isotopes and Bayesian isotope mixing model
2020
Zhang, Qianqian | Wang, Huiwei | Lu, Chuan
Sulfate (SO₄²⁻) contamination in groundwater and surface water is an environmental problem of widespread concern. In this study, we combined stable isotope analyses of SO₄²⁻ (δ³⁴S and δ¹⁸O) and water (δ²H and δ¹⁸O) with a Bayesian mixing model (SIAR), for the first time, to identify sources and transformation of SO₄²⁻ in an area of northern China with multiple potential sources of pollution. The overall values of δ³⁴S and δ¹⁸O-SO₄²⁻ ranged from 1.3‰ to 16.3‰ and −3.8‰–8.8‰ in groundwater, and from −1.1‰ to 9.3‰ and 2.7‰–9.2‰ in surface waters, respectively. Analyses of SO₄²⁻ isotopes and water chemistry indicated that SO₄²⁻ in groundwater and surface water mainly originated from mixing of oxidation of sulfate, sewage, chemical fertilizers, dissolution of evaporite and precipitation. There was no significant correlation between δ³⁴S and δ¹⁸O and SO₄²⁻ concentration in groundwater, indicating that bacterial sulfate reduction did not affect the SO₄²⁻ isotopic composition. SIAR model showed the main sources of SO₄²⁻ in groundwater and surface water comprised oxidation of sulfide minerals and sewage. In groundwater, oxidation of sulfide minerals and sewage accounted for 37.5–44.5% and 35.5–42.7% of SO₄²⁻, respectively. In regard to surface waters, the contribution of oxidation of sulfide minerals to SO₄²⁻ was higher in the wet season (31.8 ± 9.9%) than in the intermediate (22.4 ± 7.8%) and dry (20.9 ± 8.2%) seasons, but the contribution proportion of sewage was slightly lower in the wet season (19.9 ± 8.5%) than in the intermediate (23.8 ± 8.7%) and dry (24.2 ± 8.5%) seasons. This study indicates that it is necessary for local government to improve the treatment infrastructure for domestic sewage and optimize methods of agricultural fertilization and irrigation to prevent SO₄²⁻ contamination of groundwater and surface water.
اظهر المزيد [+] اقل [-]