خيارات البحث
النتائج 1 - 10 من 871
Evaluating the influence of constant source profile presumption on PMF analysis of PM2.5 by comparing long- and short-term hourly observation-based modeling
2022
Xie, Mingjie | Lu, Xinyu | Ding, Feng | Cui, Wangnan | Zhang, Yuanyuan | Feng, Wei
Hourly PM₂.₅ speciation data have been widely used as an input of positive matrix factorization (PMF) model to apportion PM₂.₅ components to specific source-related factors. However, the influence of constant source profile presumption during the observation period is less investigated. In the current work, hourly concentrations of PM₂.₅ water-soluble inorganic ions, bulk organic and elemental carbon, and elements were obtained at an urban site in Nanjing, China from 2017 to 2020. PMF analysis based on observation data during specific pollution (firework combustion, sandstorm, and winter haze) and emission-reduction (COVID-19 pandemic) periods was compared with that using the whole 4-year data set (PMFwₕₒₗₑ). Due to the lack of data variability, event-based PMF solutions did not separate secondary sulfate and nitrate. But they showed better performance in simulating average concentrations and temporal variations of input species, particularly for primary source markers, than the PMFwₕₒₗₑ solution. After removing event data, PMF modeling was conducted for individual months (PMFₘₒₙₜₕ) and the 4-year period (PMF₄₋yₑₐᵣ), respectively. PMFₘₒₙₜₕ solutions reflected varied source profiles and contributions and reproduced monthly variations of input species better than the PMF₄₋yₑₐᵣ solution, but failed to capture seasonal patterns of secondary salts. Additionally, four winter pollution days were selected for hour-by-hour PMF simulations, and three sample sizes (500, 1000, and 2000) were tested using a moving window method. The results showed that using short-term observation data performed better in reflecting immediate changes in primary sources, which will benefit future air quality control when primary PM emissions begin to increase.
اظهر المزيد [+] اقل [-]Heterogeneous HONO formation deteriorates the wintertime particulate pollution in the Guanzhong Basin, China
2022
Li, Xia | Bei, Naifang | Wu, Jiarui | Wang, Ruonan | Liu, Suixin | Liu, Lang | Jiang, Qian | Tie, Xuexi | Molina, Luisa T. | Li, Guohui
Despite implementation of strict emission mitigation measures since 2013, heavy haze with high levels of secondary aerosols still frequently engulfs the Guanzhong Basin (GZB), China, during wintertime, remarkably impairing visibility and potentially causing severe health issues. Although the observed low ozone (O₃) concentrations do not facilitate the photochemical formation of secondary aerosols, the measured high nitrous acid (HONO) level provides an alternate pathway in the GZB. The impact of heterogeneous HONO sources on the wintertime particulate pollution and atmospheric oxidizing capability (AOC) is evaluated in the GZB. Simulations by the Weather Research and Forecast model coupled with Chemistry (WRF-Chem) reveal that the observed high levels of nitrate and secondary organic aerosols (SOA) are reproduced when both homogeneous and heterogeneous HONO sources are considered. The heterogeneous sources (HET-sources) contribute about 98% of the near-surface HONO concentration in the GZB, increasing the hydroxyl radical (OH) and O₃ concentration by 39.4% and 22.0%, respectively. The average contribution of the HET-sources to SOA, nitrate, ammonium, and sulfate in the GZB is 35.6%, 20.6%, 12.1%, and 6.0% during the particulate pollution episode, respectively, enhancing the mass concentration of fine particulate matters (PM₂.₅) by around 12.2%. Our results suggest that decreasing HONO level or the AOC becomes an effective pathway to alleviate the wintertime particulate pollution in the GZB.
اظهر المزيد [+] اقل [-]Comprehensive investigation of persistent and mobile chemicals and per- and polyfluoroalkyl substances in urine of flemish adolescents using a suspect screening approach
2022
Kim, Da-Hye | Jeong, Yunsun | Belova, Lidia | Roggeman, Maarten | Fernández, Sandra F. | Poma, Giulia | Rémy, Sylvie | Verheyen, Veerle J. | Schoeters, Greet | van Nuijs, Alexander L.N. | Covaci, Adrian
Persistent and mobile chemicals (PMs) and per- and polyfluoroalkyl substances (PFAS) are groups of chemicals that have received recent global attention due to their potential health effects on the environment and humans. In this study, exposure to a broad range of PMs and PFAS was investigated in Flemish adolescents’ urine samples (n = 83) using a suspect screening approach. For this purpose, three sample preparation methods were evaluated, and a basic liquid-liquid extraction was optimized for urine analysis based on the extraction efficiency of PMs (53–80%) and PFAS (>70%). In total, 9 PMs were identified in urine samples at confidence levels (CL) 1–3 and, among them, acetaminophen, 4-aminophenol, 2,2,6,6-tetramethyl-4-piperidone, trifluoroacetic acid (TFAA), sulisobenzone, ethyl sulfate, and 1,2-benzisothiazol-3(2H)-one 1,1-dioxide were confirmed at CL 1 and 2. In addition, the detection and identification of 2,2,6,6-tetramethyl-4-piperidone, 4-aminophenol, TFAA, and m-(2,3-epoxypropoxy)-N,N-bis(2,3-epoxypropyl) aniline (CL 3), has been reported for the first time in human urine in this study. For PFAS, only 2 compounds were identified at CL 4, implying that urine is not a suitable matrix for suspect screening of such compounds. A significant difference between sexes was observed in the detection rate of identified PMs, in particular for acetaminophen, 4-aminophenol, and sulisobenzone. The findings of this study can be used in future human biomonitoring programs, such as by including the newly identified compounds in quantitative methods or monitoring in other human matrices (e.g., serum).
اظهر المزيد [+] اقل [-]PM2.5 drives bacterial functions for carbon, nitrogen, and sulfur cycles in the atmosphere
2022
Liu, Huan | Hu, Zhichao | Zhou, Meng | Zhang, Hao | Zhang, Xiaole | Yue, Yang | Yao, Xiangwu | Wang, Jing | Xi, Chuanwu | Zheng, Ping | Xu, Xiangyang | Hu, Baolan
Airborne bacteria may absorb the substance from the atmospheric particles and play a role in biogeochemical cycling. However, these studies focused on a few culturable bacteria and the samples were usually collected from one site. The metabolic potential of a majority of airborne bacteria on a regional scale and their driving factors remain unknown. In this study, we collected particulates with aerodynamic diameter ≤2.5 μm (PM₂.₅) from 8 cities that represent different regions across China and analyzed the samples via high-throughput sequencing of 16S rRNA genes, quantitative polymerase chain reaction (qPCR) analysis, and functional database prediction. Based on the FAPROTAX database, 326 (80.69%), 191 (47.28%) and 45 (11.14%) bacterial genera are possible to conduct the pathways of carbon, nitrogen, and sulfur cycles, respectively. The pathway analysis indicated that airborne bacteria may lead to the decrease in organic carbon while the increase in ammonium and sulfate in PM₂.₅ samples, all of which are the important components of PM₂.₅. Among the 19 environmental factors studied including air pollutants, meteorological factors, and geographical conditions, PM₂.₅ concentration manifested the strongest correlations with the functional genes for the transformation of ammonium and sulfate. Moreover, the PM₂.₅ concentration rather than the sampling site will drive the distribution of functional genera. Thus, a bi-directional relationship between PM₂.₅ and bacterial metabolism is suggested. Our findings shed light on the potential bacterial pathway for the biogeochemical cycling in the atmosphere and the important role of PM₂.₅, offering a new perspective for atmospheric ecology and pollution control.
اظهر المزيد [+] اقل [-]Unravelling biogeochemical drivers of methylmercury production in an Arctic fen soil and a bog soil
2022
Zhang, Lijie | Philben, Michael | Taş, Neslihan | Johs, Alexander | Yang, Ziming | Wullschleger, Stan D. | Graham, David E. | Pierce, Eric M. | Gu, Baohua
Arctic tundra soils store a globally significant amount of mercury (Hg), which could be transformed to the neurotoxic methylmercury (MeHg) upon warming and thus poses serious threats to the Arctic ecosystem. However, our knowledge of the biogeochemical drivers of MeHg production is limited in these soils. Using substrate addition (acetate and sulfate) and selective microbial inhibition approaches, we investigated the geochemical drivers and dominant microbial methylators in 60-day microcosm incubations with two tundra soils: a circumneutral fen soil and an acidic bog soil, collected near Nome, Alaska, United States. Results showed that increasing acetate concentration had negligible influences on MeHg production in both soils. However, inhibition of sulfate-reducing bacteria (SRB) completely stalled MeHg production in the fen soil in the first 15 days, whereas addition of sulfate in the low-sulfate bog soil increased MeHg production by 5-fold, suggesting prominent roles of SRB in Hg(II) methylation. Without the addition of sulfate in the bog soil or when sulfate was depleted in the fen soil (after 15 days), both SRB and methanogens contributed to MeHg production. Analysis of microbial community composition confirmed the presence of several phyla known to harbor microorganisms associated with Hg(II) methylation in the soils. The observations suggest that SRB and methanogens were mainly responsible for Hg(II) methylation in these tundra soils, although their relative contributions depended on the availability of sulfate and possibly syntrophic metabolisms between SRB and methanogens.
اظهر المزيد [+] اقل [-]Morphological and chemical classification of fine particles over the Yellow Sea during spring, 2015–2018
2022
Kwak, Nohhyeon | Lee, Haebum | Maeng, Hyunok | Seo, Arom | Lee, Kwangyul | Kim, Seojeong | Lee, Meehye | Cha, Joo Wan | Shin, Beomcheol | Park, Kihong
Airborne fine particles can affect climate change and human health; moreover, they can be transported over significant distances. However, studies on characteristics of individual particles and their morphology, elemental composition, aging processes, and spatial distribution after long-range transport over the Yellow Sea are limited. Therefore, in this study, we conducted shipborne measurements of fine particulate matter of less than 2.5 μm in diameter (PM₂.₅) over the Yellow Sea and classified the individual particles into seven types based on their morphology and composition. Overall, the percentage of organic-rich particles was the highest, followed by that of sea spray, sulfur-rich, dust, metals, fly ash, soot, and other particles. Near Shandong, China, the percentage of fly ash and sulfur-rich particles increased, while an increased percentage of only sulfur-rich particles was observed near the Korean Peninsula. In the open sea, the PM₂.₅ concentrations were the lowest, and sea spray particles predominated. During the cruises, three types (Types 1, 2, and 3) of events with substantially increased PM₂.₅ concentrations occurred, each with different dominant particles. Type 1 events frequently featured air masses from northern China and Mongolia with high wind speeds and increased dust particles. Type 2 events involved air masses from China with high wind speeds; fly ash, soot, organic-rich particles, and the sulfate percentage in PM₂.₅ increased. Type 3 events displayed stagnant conditions and local transport (from Korea); soot, dust particles, and the secondary sulfate and nitrate percentages in PM₂.₅ increased. Thus, different types of transport affected concentrations and dominant types of fine particles over the Yellow Sea during spring.
اظهر المزيد [+] اقل [-]Metal-free single heteroatom (N, O, and B)-doped coconut-shell biochar for enhancing the degradation of sulfathiazole antibiotics by peroxymonosulfate and its effects on bacterial community dynamics
2022
Hung, Chang-Mao | Chen, Chiu-Wen | Huang, Jinbao | Dong, Cheng-Di
Metal-free single heteroatom (N, O, and B)-doped coconut-shell biochar (denoted as N-CSBC, O-CSBC, and B-CSBC, respectively) were fabricated in a one-step pyrolysis process to promote peroxymonosulfate (PMS) activation for the elimination of sulfathiazole (STZ) from aquaculture water. B-CSBC exhibited remarkably high catalytic activity with 92% of STZ degradation in 30 min attributed to the presence of meso-/micro-pores and B-containing functional groups (including B–N, B–C, and B₂O₃ species). Radical quenching tests revealed SO₄•⁻, HO•, and ¹O₂ being the major electron acceptors contributing to STZ removal by PMS over B-CSBC catalyst. The B-CSBC catalyst has demonstrated high sustainability in multiple consecutive treatment cycles. High salinity and the presence of inorganic ions such as chloride, enhanced the performance of the sulfate radical-carbon-driven advanced oxidation processes (SR–CAOPs) as pretreatment strategy that significantly facilitated the removal of STZ from aquaculture water. Furthermore, a potential sulfonamide-degrading microorganism, Cylindrospermum_stagnale, belonging to the phylum Cyanobacteria, was the dominant functional bacteria according to the results of high-throughput 16S rRNA gene sequencing conducted after the B-CSBC/PMS treatment. This study provides new insights into the SR–CAOP combined with bioprocesses for removing STZ from aqueous environments.
اظهر المزيد [+] اقل [-]Impacts of chlorine chemistry and anthropogenic emissions on secondary pollutants in the Yangtze river delta region
2021
Li, Jingyi | Zhang, Na | Wang, Peng | Choi, Minsu | Ying, Qi | Guo, Song | Lu, Keding | Qiu, Xionghui | Wang, Shuxiao | Hu, Min | Zhang, Yuanhang | Hu, Jianlin
Multiphase chemistry of chlorine is coupled into a 3D regional air quality model (CMAQv5.0.1) to investigate the impacts on the atmospheric oxidation capacity, ozone (O₃), as well as fine particulate matter (PM₂.₅) and its major components over the Yangtze River Delta (YRD) region. The developed model has significantly improved the simulated hydrochloric acid (HCl), particulate chloride (PCl), and hydroxyl (OH) and hydroperoxyl (HO₂) radicals. O₃ is enhanced in the high chlorine emission regions by up to 4% and depleted in the rest of the region. PM₂.₅ is enhanced by 2–6%, mostly due to the increases in PCl, ammonium, organic aerosols, and sulfate. Nitrate exhibits inhomogeneous variations, by up to 8% increase in Shanghai and 2–5% decrease in most of the domain. Radicals show different responses to the inclusion of the multiphase chlorine chemistry during the daytime and nighttime. Both OH and HO₂ are increased throughout the day, while nitrate radicals (NO₃) and organic peroxy radicals (RO₂) show an opposite pattern during the daytime and nighttime. Higher HCl and PCl emissions can further enhance the atmospheric oxidation capacity, O₃, and PM₂.₅. Therefore, the anthropogenic chlorine emission inventory must be carefully evaluated and constrained.
اظهر المزيد [+] اقل [-]Gastric bioaccessibility is a conservative measure of nickel bioavailability after oral exposure: Evidence from Ni-contaminated soil, pure Ni substances and Ni alloys
2021
Dutton, Michael D. | Thorn, Ryan | Lau, Wilson | Vasiluk, Luba | Hale, Beverly
Oral bioaccessibility (BAc) is a surrogate for the bioavailability (BAv) of a broad range of substances, reflecting the value that the approach offers for assessing oral exposure and risk. BAc is generally considered to have been validated as a proxy for oral BAv for the important soil contaminants Pb, Cd, and As. Here, using literature data for Ni BAc and BAv, we confirmed that Ni BAc (gastric only, with HCl mimicking stomach conditions) is a conservative measure of BAv for the oral exposure pathway. Measured oral BAv of Ni in soil was shown to be 50–100 times less than the simplest oral BAc estimates (%BAv = 0.012(%BAc) - 0.023 (r = 0.701, 95%CI [0.456, 0.847], n = 30)) in rats, demonstrating a significant conservatism for exposure assessment. The relationship between the oral BAv and BAc of nickel sulfate hexahydrate (NSHH) was comparable to that of soil, with measured oral BAv of NSHH (1.94%) being a small fraction of NSHH gastric BAc (91.1%). BAc and BAv reflect the underlying Ni speciation of the sample, with the bioaccessible leaching limits being represented by the highly soluble Ni salts and the poorly soluble Ni monoxide, and the environmental (e.g. soil properties) or gastric (e.g. food present) conditions. BAc has potential utility for chemical classification purposes because pure Ni substances can be grouped by %BAc values(using standardized methodologies for the relevant exposure routes), these groupings reflecting the underlying chemistry and speciation of the samples of substances tested here, with 0.008% %BAc for alloys (SS304, SS316, Inconel, Monel), <1% in green NiO and Ni metal massives, 0.9–23.6% for Ni powders, 9.8–22.7% for Ni sulfides, 26.3–29.6% for black oxidic Ni, and 82–91% for the soluble Ni salts. Oral BAc provides realistic yet conservative estimates of BAv for the hazard classification and risk assessment of Ni substances.
اظهر المزيد [+] اقل [-]Long Island enhanced aerosol event during 2018 LISTOS: Association with heatwave and marine influences
2021
Zhang, Jie | Mak, John | Wei, Ziran | Cao, Cong | Ninneman, Matthew | Marto, Joseph | Schwab, James J.
The co-occurrence of enhancement in aerosol concentration, temperatures, and ozone mixing ratio was observed between June 29 and July 4, 2018 (enhanced period, EP) on Long Island (LI) and the greater NYC metropolitan area during part of the 2018 Long Island Sound Tropospheric Ozone Study (LISTOS). Two aerosol formation pathways were identified during the EP, the first being the condensation of semi- and intermediate volatility oxidation products of anthropogenic volatile organic compounds (AVOCs) under stagnant synoptic flow conditions, high temperatures and afternoon sea-breeze circulation. While this first pathway was prevalent, the most abundant organic aerosol factor was less oxidized oxygenated organic aerosol or LO-OOA. The second formation pathway occurred during a period of more persistent (synoptic) on-shore flow transporting more aged aerosol which consisted of an internal mixture of more oxidized oxygenated organic aerosol (MO-OOA), methanesulfonic acid (MSA) and sulfate. It was estimated that 35% of the sulfate observed during the mature period (an average of about 1.2 μg m⁻³) originated from oceanic dimethyl sulfide (DMS) emissions. These two formation pathways helped elucidate the sources of fine particle pollution, highlighted the interaction between human emissions and natural DMS emission, and will help our understanding of pollution affecting other urban areas adjacent to large bodies of water during hot and stagnant periods.
اظهر المزيد [+] اقل [-]