خيارات البحث
النتائج 1 - 8 من 8
Sex-dependent effects of sulfamethoxazole exposure on pro-/anti-oxidant status with stimulation on growth, behavior and reproduction in the amphipod Hyalella azteca
2019
Yu, Zhenyang | Yin, Daqiang | Zhang, Jing
Negative effects of environmental antibiotics on non-target organisms were observed in studies at various levels of the biological organization. Yet, studies combining the effects at multiple levels were required to interpret their ecological frequencies in a broader context. Currently, effects of sulfamethoxazole (SMX) was studied on the amphipod Hyalella azteca which is important in ecological stability. At the biochemical level, effects on the antioxidant capacities showed stimulation with an inverse U-shaped change over the concentrations. The stimulation was greater in male than in females. Effects on the oxidative stress showed a U-shaped change which included stimulation and inhibition in males, and solely stimulation in females. The stimulation was less in males than in females. Effects on acetylcholinesterase (AChE) activities in both sexes were well correlated with those on oxidative stress (p < 0.05). At the individual level, effects on the body weight showed an inverse U-shaped change over concentrations, and the stimulation was greater in males than in females. The stimulations were significantly correlated with the male oxidative stress (p < 0.01), and male (p < 0.1) and female AChE activities (p < 0.05). Effects of SMX on the pre-copulation behavior also showed an inverse U-shaped change which correlated with male and female antioxidant capacities (p < 0.05) and the male body weight (p < 0.05). At the population level, effects on the reproduction showed an inverse U-shaped change over concentrations, and they significantly correlated with the male body weight (p < 0.05) and the pre-copulation behavior (p < 0.05). Summing up, SMX provoked simultaneous disturbances on the amphipod at multiple levels with sex-dependent responses.
اظهر المزيد [+] اقل [-]Rapidly probing the interaction between sulfamethazine antibiotics and fulvic acids
2018
Xu, Juan | Hu, Yan-Yun | Li, Xiu-Yan | Chen, Jie-Jie | Sheng, Guo-Ping
Antibiotics residuals in the environments receive wide concerns due to the high risk of generating antibiotic resistance. Natural organic matters (NOM) existed in the environments are considered to have the capacity of binding with organic contaminants, consequently influencing their speciation and transformation in the natural environments. To assess the migration of antibiotics in the environments, it is crucial to understand the binding mechanisms between NOM and antibiotics, which is still unclear due to the limit of available research methods. In this study, the interaction between fulvic acids (FA), one of the main components of NOM, and sulfamethazine (SMZ) was characterized by nuclear magnetic resonance (NMR) combined with surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) technology. The parameters related to kinetics and thermodynamics of the interaction were determined, and the possible mechanisms driving the interaction were also proposed. In addition, density functional theory (DFT) was used to predict the binding mode between FA and SMZ to reveal the interaction mechanism. Results indicate that FA can effectively bound with SMZ to form a stable complex with a binding constant at the level of 10³ L/mol. The kinetic parameters including association and dissociation constants were 29.4 L/mol/s and 6.64 × 10⁻³ 1/s, respectively. Hydrophobic interaction might play significant roles in the binding interaction with ancillary contribution of π-π conjunction arising from the aromatic rings stacking of FA and SMZ.
اظهر المزيد [+] اقل [-]Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions
2014
Xie, Mengxing | Chen, Wei | Xu, Zhaoyi | Zheng, Shourong | Zhu, Dongqiang
The main objective of this study was to understand the key factors and mechanisms controlling adsorption of sulfonamides to biochars. Batch adsorption experiments were performed for sulfamethoxazole and sulfapyridine to three pine-wood biochars prepared under different thermochemical conditions: pyrolysis at 400 °C (C400) and 500 °C (C500), and pyrolysis at 500 °C followed with hydrogenation (C500-H). For both sulfonamides, the adsorbent surface area-normalized adsorption was stronger to C500 than to C400. This is attributable to the enhanced π–π electron-donor–acceptor interaction with the carbon surface of C500 due to the higher degree of graphitization. Despite the relatively large difference in surface O-functionality content between C500 (12.2%) and C500-H (6.6%), the two biochars exhibited nearly identical adsorbent surface area-normalized adsorption, indicating negligible role of surface O-functionalities in the adsorption to these adsorbents. Effects of solution chemistry conditions (pH, Cu2+, and dissolved soil humic acid) on adsorption were examined.
اظهر المزيد [+] اقل [-]Yeast biomass-induced Co2P/biochar composite for sulfonamide antibiotics degradation through peroxymonosulfate activation
2021
Peng, Yuanyuan | Tong, Wenhua | Xie, Yi | Hu, Wanrong | Li, Yonghong | Zhang, Yongkui | Wang, Yabo
Advanced oxidation processes (AOPs) based on peroxymonosulfate (PMS) activation have attracted increasing attention in recent years for organic pollutants removal. Herein, we put forward a facile method to form cobalt phosphide/carbon composite for PMS activation. Combining impregnation approach with pyrolysis treatment enabled the formation of Co₂P/biochar composites using baker’s yeast and Co²⁺ as precursors. The as-synthesized products exhibited excellent catalytic activity for sulfamethoxazole (SMX) degradation over the pH range 3.0–9.0 b y activating PMS. For example, 100% of SMX (20 mg L⁻¹) removal was achieved in 20 min with catalyst dosage of 0.4 g L⁻¹ and PMS loading of 0.4 g L⁻¹. Near zero Co²⁺ leaching was observed during catalytic reaction, which remarkably lowered the toxic risk of transition metal ion in water. Meanwhile, the reusability of catalyst could be attained by thermal treatment. SMX degradation intermediates were identified by liquid chromatography-mass spectrometry (LC-MS), which facilitated the proposal of possible SMX degradation pathways. Ecological Structure Activity Relationships (ECOSAR) analysis indicated that SMX degradation intermediates may not pose ecological toxicity to the environment. Further investigation verified that Co₂P/biochar composites could set off PMS activation not only for the degradation of SMX but also for other sulfonamides. In this study, we not only developed a facile method of utilizing environmental-benign biomass for transition metal phosphide/carbon composite formation, but also achieved highly efficient antibiotic elimination by PMS-based AOP.
اظهر المزيد [+] اقل [-]Effect of sulfamethazine on surface characteristics of biochar colloids and its implications for transport in porous media
2020
Yang, Wen | Feng, Tongtong | Flury, Markus | Li, Baoguo | Shang, Jianying
Antibiotics are contaminants of emerging concern due to their potential effect on antibiotic resistance and human health. Antibiotics tend to sorb strongly to organic materials, and biochar, a high efficient agent for adsorbing and immobilizing pollutants, can thus be used for remediation of antibiotic-contaminated soil and water. The effect of ionizable antibiotics on surface characteristics and transport of biochar colloids (BC) in the environment is poorly studied. Column experiments of BC were conducted in 1 mM NaCl solution under three pH (5, 7, and 10) conditions in the presence of sulfamethazine (SMT). Additionally, the adsorption of SMT by BC and the zeta potential of BC were also studied. The experimental results showed that SMT sorption to BC was enhanced at pH 5 and 7, but reduced at pH 10. SMT sorption reduced the surface charge of BC at pH 5 and 7 due to charge shielding, but increased surface charge at pH 10 due to adsorption of the negatively charged SMT species. The mobility of BC was inhibited by SMT under acidic or neutral conditions, while enhanced by SMT under alkaline conditions, which can be well explained by the change of electrostatic repulsion between BC and sand grains. These findings imply that pH conditions played a crucial role in deciding whether the transport of BC would be promoted by SMT or not. Biochar for antibiotics remediation will be more effective under acidic and neutral soil conditions, and the mobility of BC will be less than in alkaline soils.
اظهر المزيد [+] اقل [-]Negative bottom-up effects of sulfadiazine, but not penicillin and tetracycline, in soil substitute on plants and higher trophic levels
2019
Pufal, Gesine | Memmert, Jörg | Leonhardt, Sara Diana | Minden, Vanessa
Veterinary antibiotics are widely used in livestock production and can be released to the environment via manure, affecting non-target organisms. Recent studies provide evidence that antibiotics can adversely affect both plants and insects but whether antibiotics in soil also affect trophic interactions is unknown.We tested whether antibiotics grown in sand as soil substitute with environmentally relevant concentrations of penicillin, sulfadiazine and tetracycline affect the survival of aphids feeding on plants (two crop and one non-crop plant species). Apera spica-venti, Brassica napus, and Triticum aestivum individuals were infested with aphids that were monitored over four weeks. We did not observe effects of penicillin or tetracycline on plants or aphids. However, sulfadiazine treatments reduced plant growth and increased mortality in the two tested grass species, but not in B. napus. Sulfadiazine subsequently decreased aphid density indirectly through reduced host plant biomass. We thus show that an antibiotic at realistic concentrations in a soil substitute can affect several trophic levels, i.e. plants and herbivores. This study contributes to the environmental risk assessment of veterinary antibiotics as it implies that their use potentially affects plant-insect interactions at environmentally relevant concentrations.
اظهر المزيد [+] اقل [-]Effect of humic acid (HA) on sulfonamide sorption by biochars
2015
Lian, Fei | Sun, Binbin | Chen, Xi | Zhu, Lingyan | Liu, Zhongqi | Xing, Baoshan
Effect of quantity and fractionation of loaded humic acid (HA) on biochar sorption for sulfonamides was investigated. The HA was applied in two different modes, i.e. pre-coating and co-introduction with sorbate. In pre-coating mode, the polar fractions of HA tended to interact with low-temperature biochars via H-bonding, while the hydrophobic fractions were likely to be adsorbed by high-temperature biochars through hydrophobic and π-π interactions, leading to different composition and structure of the HA adlayers. The influences of HA fractionation on biochar sorption for sulfonamides varied significantly, depending on the nature of interaction between HA fraction and sorbate. Meanwhile, co-introduction of HA with sulfonamides revealed that the effect of HA on sulfonamide sorption was also dependent on HA concentration. These findings suggest that the amount and fractionation of adsorbed HA are tailored by the surface properties of underlying biochars, which differently affect the sorption for organic contaminants.
اظهر المزيد [+] اقل [-]Sulfonamide antibiotics in the Northern Yellow Sea are related to resistant bacteria: Implications for antibiotic resistance genes
2014
Na, Guangshui | Zhang, Wanru | Zhou, Shiyao | Gao, Hui | Lu, Zihao | Wu, Xian | Li, Ruijing | Qiu, Lina | Cai, Yaqi | Yao, Ziwei
Antibiotic resistance gene (ARG) residues and the mode of transmission in marine environments remain unclear. The sulfonamide (SAs) concentrations, different genes and total bacterial abundance in seawater and sediment of the Northern Yellow Sea were analyzed. Results showed the genes sul I and sul II were present at relatively high concentrations in all samples, whereas the gene sul III was detected fewer. The ARGs concentrations in the sediment were 103 times higher than those in water, which indicated sediment was essential ARG reservoir. Statistical analysis revealed the total antibiotic concentration was positively correlated with the relative abundance of the gene sul I and sul II. The relative abundances of the gene sul I and the gene sul II were also correlated positively with those of the gene int1. This correlation demonstrated that SAs exerted selective pressure on these ARGs, whereas the gene int1 could be implicated in the propagation of the genes sul I and sul II in marine environments.
اظهر المزيد [+] اقل [-]