خيارات البحث
النتائج 1 - 10 من 56
Valorization of biodiesel side stream waste glycerol for rhamnolipids production by Pseudomonas aeruginosa RS6
2021
Baskaran, Shobanah Menon | Zakaria, Mohd Rafein | Mukhlis Ahmad Sabri, Ahmad Syafiq | Mohamed, Mohd Shamzi | Wasoh, Helmi | Toshinari, Maeda | Hassan Mohd. Ali, | Banat, Ibrahim M.
Biodiesel side stream waste glycerol was identified as a cheap carbon source for rhamnolipids (RLs) production which at the same time could improve the management of waste. The present study aimed to produce RLs by using Pseudomonas aeruginosa RS6 utilizing waste glycerol as a substrate and to evaluate their physico-chemicals properties. Fermentation conditions such as temperature, initial medium pH, waste glycerol concentration, nitrogen sources and concentrations resulted in different compositions of the mono- and di-RLs produced. The maximum RLs production of 2.73 g/L was obtained when P. aeruginosa RS6 was grown in a basal salt medium supplemented with 1% waste glycerol and 0.2 M sodium nitrate at 35 °C and pH 6.5. At optimal fermentation conditions, the emulsification index (E₂₄) values of cooking oil, diesel oil, benzene, olive oil, petroleum, and kerosene were all above E₂₄₌50%. The surface tension reduction obtained from 72.13 mN/m to 29.4–30.4 mN/m was better than the surface activity of some chemical-based surfactants. The RLs produced possessed antimicrobial activities against Gram-negative and Gram-positive bacteria with values ranging from 37% to 77% of growth inhibition when 1 mg/mL of RLs was used. Concentrations of RLs below 1500 μg/mL did not induce phytotoxicity effects on the tested seeds (Vigna radiata) compared to the chemical-based- surfactant, SDS. Furthermore, RLs tested on zebrafish (Danio rerio) embryos only exhibited low acute toxicity with an LC₅₀ value of 72.97 μg/mL at 48 h of exposure suggesting a green and eco-biochemical worthy of future applications to replace chemical-based surfactants.
اظهر المزيد [+] اقل [-]Interfacial interaction between benzo[a]pyrene and pulmonary surfactant: Adverse effects on lung health
2021
Cao, Yan | Zhao, Qun | Geng, Yingxue | Li, Yingjie | Huang, Jianhong | Tian, Senlin | Ning, Ping
Inhaled polycyclic aromatic hydrocarbons (PAHs) can directly interact with the lung surfactant (PS) lining of alveoli, thereby affecting the normal physiological functions of PS, which is a serious threat to lung health. In spite of the extensive study of benzo[a]pyrene (BaP, a representative of PAHs), its potential biophysical influence on the natural PS is still largely unknown. In this study, the interfacial interaction between PS (extracted from porcine lungs) and BaP is investigated in vitro. The results showed that the surface tension, phase behavior, and interfacial structure of the PS monolayers were obviously altered in the presence of BaP. A solubilization test manifested that PS and its major components (dipalmitoyl phosphatidylcholine, DPPC; bovine serum albumin, BSA) could in turn accelerate the dissolution of BaP, which followed the order: PS > DPPC > BSA, and mixed phospholipids were significantly responsible for the solubilization of BaP by PS. In addition, solubilization of BaP also enhanced the consumption of hydroxyl radicals (·OH) in the simulated lung fluid, which could disturb the balance between oxidation and antioxidation.
اظهر المزيد [+] اقل [-]6-benzylaminopurine exposure induced development toxicity and behaviour alteration in zebrafish (Danio rerio)
2021
Yang, Mengying | Qiu, Jinyu | Zhao, Xin | Feng, XiZeng
6-benzylaminopurine (6-BA) is one of the first synthetic hormones and has been widely used in fruit cultivation, gardening and agriculture. However, excessive use of 6-BA will cause potential harm to the environment and humans. Therefore, our research focused on assessing the impact of 6-BA on the development and neurobehavior of zebrafish. The results showed that 6-BA had little effect on the embryos from 2 hpf to 10 hpf. However, delayed development, decreased survival and hatchability were observed under 30 and 40 mg/L 6-BA from 24 hpf. 6-BA also reduced surface tension of embryonic chorions at 24 hpf. In addition, 6-BA caused abnormal morphology and promoted the accumulation of oxidative stress. Transcription of genes in connection with development and oxidative stress was also strikingly altered. Results of movement assay showed that zebrafish were less active and their behavior was significantly inhibited under the 20 and 30 mg/L 6-BA treatments. Locomotion-related genes th and mao were down-regulated by gradient, while the transcription of dbh was upregulated at a low concentration (2 mg/L) but decreased as the concentration increased. Moreover, 6-BA exposure caused increased arousal and decreased sleep. Sleep/wake related genes hcrt and hcrtr2 were upregulated, but decreased at 30 mg/L, while the mRNA level of aanat2 was reduced in a concentration-dependent manner. To sum up, our results showed that 6-BA induced developmental toxicity, promoted the accumulation of oxidative stress, and damaged locomotion and sleep/wake behavior.
اظهر المزيد [+] اقل [-]Uptake and detoxification of diesel oil by a tropical soil Actinomycete Gordonia amicalis HS-11: Cellular responses and degradation perspectives
2020
Sowani, Harshada | Kulkarni, Mohan | Zinjarde, Smita
A tropical soil Actinomycete, Gordonia amicalis HS-11, has been previously demonstrated to degrade unsaturated and saturated hydrocarbons (squalene and n-hexadecane, respectively) in an effective manner. In present study, G. amicalis HS-11 degraded 92.85 ± 3.42% of the provided diesel oil [1% (v/v)] after 16 days of aerobic incubation. The effect of different culture conditions such as carbon source, nitrogen source, pH, temperature, and aeration on degradation was studied. During degradation, this Actinomycete synthesized surface active compounds (SACs) in an extracellular manner that brought about a reduction in surface tension from 69 ± 2.1 to 30 ± 1.1 mN m⁻¹ after 16 days. The morphology of cells grown on diesel was monitored by using a Field Emission Scanning Electron Microscope. Diesel-grown cells were longer and clumped with smooth surfaces, possibly due to the secretion of SACs. The interaction between the cells and diesel oil was studied by Confocal Laser Scanning Microscope. Some cells were adherent on small diesel droplets and others were present in the non-attached form thus confirming the emulsification ability of this organism. The fatty acid profiles of the organism grown on diesel oil for 48 h were different from those on Luria Bertani Broth. The genotoxicity and cytotoxicity of diesel oil before and after degradation were determined. Cytogenetic parameters such as mitotic index (MI); mitosis distribution and chromosomal aberration (type and frequency) were assessed. Oxidative stress was evaluated by measuring levels of catalase, superoxide dismutase and concentration of malondialdehyde. On the basis of these studies it was deduced that the degradation metabolites were relatively non-toxic.
اظهر المزيد [+] اقل [-]Synergistic effects of compost, cow bile and bacterial culture on bioremediation of hydrocarbon-contaminated drill mud waste
2020
Osei-Twumasi, Daniel | Fei-Baffoe, Bernard | Anning, Alexander Kofi | Danquah, Kwabena Owusu
Bioremediation has gained global prominence as an effective method for treating hydrocarbon-contaminated drill mud waste (HCDW). However, the problem of low nutrient content, bioavailability and microbial presence remain largely unresolved. In this study, the synergistic effects of compost, cow bile and bacterial culture on the degradation rate of HCDW was investigated. A homogenized HCDW sample (80 kg) obtained from 25 different drill mud tanks was divided into 20 portions (4 kg each) and each adjusted to 1.4% nitrogen content + 20 ml cow bile (i.e., basic treatment). Pure cultures of Brevibacterium casei (Bc) and Bacillus zhangzhouensi (Bz) and their mixture (BcBz) were subsequently added to 12 of the amended HCDW (basic) to undergo a 6-week incubation. A portion of the unamended HCDW (2 kg) was used as control. Initial pH, electrical conductivity and surface tension values of the HCDW were 8.83, 2.34 mS/cm and 36.5 mN/m, respectively. Corresponding values for total petroleum hydrocarbon (TPH), total nitrogen and total plate count bacteria were 165 g/kg, 0.04% and 4.4 × 10² cfu/ml. The treatments led to a substantial reduction in TPH (p < 0.05) while the control had no significant effect (p > 0.05). TPH reduction after the experimental period occurred in the order: basic + BcBz (99.7%) > basic + Bz (99.5%) > basic + Bc (99.2%) > basic (95.2%) > control (0.06%). Multiple regression analysis revealed significant effect of total plate count, pH, CN ratio and electrical conductivity (R² = 0.87, p = 0.05) on the degradation of TPH in the HCDW. The study demonstrates strong interactive effects of compost, cow bile and bacteria culture on the remediation of HCDW, which can be applied to boost the efficiency of the bioremediation technique.
اظهر المزيد [+] اقل [-]Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment
2018
Lee, Dong Wan | Lee, Hanbyul | Kwon, Bong-Oh | Khim, Jong Seong | Yim, Un Hyuk | Kim, Beom Seok | Kim, Jae Jin
Crude oil and its derivatives are considered as one group of the most pervasive environmental pollutants in marine environments. Bioremediation using oil-degrading bacteria has emerged as a promising green cleanup alternative in more recent years. The employment of biosurfactant-producing and hydrocarbon-utilizing indigenous bacteria enhances the effectiveness of bioremediation by making hydrocarbons bioavailable for degradation. In this study, the best candidates of biosurfactant-producing indigenous bacteria were selected by screening of biochemical tests. The selected bacteria include Bacillus algicola (003-Phe1), Rhodococcus soli (102-Na5), Isoptericola chiayiensis (103-Na4), and Pseudoalteromonas agarivorans (SDRB-Py1). In general, these isolated species caused low surface tension values (33.9–41.3 mN m−1), high oil spreading (1.2–2.4 cm), and hydrocarbon emulsification (up to 65%) warranting active degradation of hydrocarbons. FT-IR and LC-MS analyses indicated that the monorhamnolipid (Rha-C16:1) and dirhamnolipid (Rha-Rha-C6-C6:1) were commonly produced by the bacteria as potent biosurfactants. The residual crude oil after the biodegradation test was quantitated using GC-MS analysis. The bacteria utilized crude oil as their sole carbon source while the amount of residual crude oil significantly decreased. In addition the cell-free broth containing biosurfactants produced by bacterial strains significantly desorbed crude oil in oil-polluted marine sediment. The selected bacteria might hold additional capacity in crude oil degradation. Biosurfactant-producing indigenous bacteria therefore degrade crude oil hydrocarbon compounds, produce biosurfactants that can increase the emulsification of crude oil and are thus more conducive to the degradation of crude oil.
اظهر المزيد [+] اقل [-]Study of the oil interaction towards oil spill recovery skimmer material: Effect of the oil weathering and emulsification properties
2018
Farooq, Umer | Taban, Ingrid C. | Daling, Per S.
The primary aim of this research was to identify the physicochemical properties of the oil and water-in-oil (W/O) emulsions used during a NOFO Oil-on-Water field trials that reduced the performance of the skimmers recovery efficacy during the trials. Extensive studies were performed at SINTEF laboratories with the residues of oil topped (i.e. evaporative loss of crude oil components by distillation process at large scale) for the field trial and compared it with different residues of oil topped by bench scale laboratory procedures. In order to obtain a sufficient stable W/O emulsion for the field trial, bunker fuel oil (IFO380) and various concentrations of an emulsifier (Paramul®) were also added to the residues of oil topped on large scale and investigated through interfacial tension, contact angle, droplet adhesion and “dip and withdraw” tests. The investigations revealed that the addition of an emulsifier lowered the interfacial tension of oil residues, which consequently reduced the adherence properties of the oil and emulsions to the surface of the skimmer material. Too high concentration of an emulsifier (>0,5%) also had a negative effect on the stability of W/O emulsion.
اظهر المزيد [+] اقل [-]Purification and characterization of biosurfactant produced by Bacillus licheniformis Y-1 and its application in remediation of petroleum contaminated soil
2016
Liu, Boqun | Liu, Jinpeng | Ju, Meiting | Li, Xiaojing | Yu, Qilin
In our previous research, a petroleum degrading bacteria strain Bacillus licheniformis Y-1 was obtained in Dagang Oilfield which had the capability of producing biosurfactant. This biosurfactant was isolated and purified in this work. The biosurfactant produced by strain Y-1 had the capability to decrease the surface tension of water from 74.66 to 27.26mN/m, with the critical micelle concentration (CMC) of 40mg/L. The biosurfactant performed not only excellent stabilities against pH, temperature and salinity, but also great emulsifying activities to different kinds of oil, especially the crude oil. According to the results of FT-IR spectrum and 1H NMR spectrum detection, the surfactant was determined to be a cyclic lipopeptide. Furthermore, through the addition of surfactant, the effect of petroleum contaminated soil remediation by fungi got a significant improvement.
اظهر المزيد [+] اقل [-]Quantification of the effect of oil layer thickness on entrainment of surface oil
2015
Zeinstra-Helfrich, Marieke | Koops, Wierd | Dijkstra, Klaas | Murk, Albertinka J.
This study quantifies the effect of oil layer thickness on entrainment and dispersion of oil into seawater, using a plunging jet with a camera system. In contrast to what is generally assumed, we revealed that for the low viscosity “surrogate MC252 oil” we used, entrainment rate is directly proportional to layer thickness. Furthermore, the volume of stably suspended small oil droplets increases with energy input (plunge height) and is mostly proportional to layer thickness. Oil pre-treated with dispersants (dispersant-oil ratio ranges from 1:50 to 1:300) is greatly entrained in such large amounts of small droplets that quantification was impossible with the camera system. Very low interfacial tension causes entrainment by even minor secondary surface disturbances. Our results indicate that the effect of oil layer thickness should be included in oil entrainment and dispersion modelling.
اظهر المزيد [+] اقل [-]Screening of biosurfactant producers from petroleum hydrocarbon contaminated sources in cold marine environments
2014
Cai, Qinhong | Zhang, Baiyu | Chen, Bing | Zhu, Zhiwen | Lin, Weiyun | Cao, Tong
An overview of literature about isolating biosurfactant producers from marine sources indicated no such producers have been reported form North Atlantic Canada. Water and sediment samples were taken from petroleum hydrocarbon contaminated coastal and offshore areas in this region. Either n-hexadecane or diesel was used as the sole carbon source for the screening. A modified colony-based oil drop collapsing test was used to cover sessile biosurfactant producers. Fifty-five biosurfactant producers belong to genera of Alcanivorax, Exiguobacterium, Halomonas, Rhodococcus, Bacillus, Acinetobacter, Pseudomonas, and Streptomyces were isolated. The first three genera were established after 1980s with interesting characteristics and limited relevant publications. Some of the 55 isolated strains were found with properties such as greatly reducing surface tension, stabilizing emulsion and producing flocculant. Isolates P6-4P and P1-5P were selected to demonstrate the performance of biosurfactant production, and were found to reduce the surface tension of water to as low as 28dynes/cm.
اظهر المزيد [+] اقل [-]