خيارات البحث
النتائج 1 - 10 من 610
A New Sustainable Approach to Integrated Solid Waste Management in Shiraz, Iran
2022
Molayzahedi, Seyed Mohammadali | Abdoli, Mohammad Ali
Cities in developing countries like Shiraz in Iran face significant challenges due to a lack of an integrated solid waste management system. Climate change, soil, and water pollution are examples of environmental issues caused by improper Municipal Solid Waste Management Systems (MSWMS) in developing countries. The aim of this study is to find solutions for these environmental problems based on the experiences of developed countries. The data was collected using several methods such as visual observations, studying accessible documents of the current situation of the MSWMS in Shiraz, and participating in an interview with engineers the 'Shiraz Municipality Waste Management Organization' (SMWMO). Results present the current functional elements of MSWMS in Shiraz, Shiraz waste diversion rate (0.22), and its Zero Waste Index (.015). Moreover, the results present some recommendations to find a way to transform cities like Shiraz into zero-waste cities. Results indicate that establishing zero-waste policies, legal frameworks, and financial strategies as well as convincing private sector involvements in installing waste-to-energy facilities and a proper sanitary landfill to move the city toward optimum recycling and zero landfilling in addition to reducing consumption and maximizing diversion rate and finally sustainable development by the cooperation of government, NGOs and media programs would solve many problems of the MSWMS and would solve environmental issues in many cities.
اظهر المزيد [+] اقل [-]The Environmental Strategic Analysis of Oil & Gas Industries in the Kurdistan Region Using PESTLE, SWOT and FDEMATEL
2019
Koshesh, O. S. | Jafari, H. R.
The need for oil and natural gas as a major source of energy is vital. On the one hand, it has affected the political and economic equations at the international, regional and national level. On the other hand, it has had negative effects on sociocultural, legal, and environmental aspects as well as on the physical and mental health of human beings. Therefore, the need to provide an environmental policy that addresses the various dimensions of the oil and gas industry will be necessary. The present paper aims to set up a conceptual model of environmental policy for sustainable development in the oil and gas industries of the Kurdistan Region through the use of these 6 components: political, economic, sociocultural, technological, legal and environmental. It will also be using the techniques of PESTLE, SWOT, SPACE, FANP, FDEMATEL, and simulation with the VENSIM software. The results show the weights of the criteria respectively are Political; 1.59, Economic; 0.78, Sociocultural; 0.00, Legal; -0.99, Technological; -0.61 and Environmental; -0.70. So that all components are important, but that political and economic factors have a significant influence on environmental policies and oil and gas industries. Sociocultural components have a neutral role and the technological, legal and environmental components are impressible. Finally, fifteen strategies for the formulation of an effective environmental policy in the oil and gas industry were presented.
اظهر المزيد [+] اقل [-]Seawater intrusion decreases the metal toxicity but increases the ecological risk and degree of treatment for coastal groundwater: An Indian perspective
2022
Bhagat, Chandrashekhar | Manish Kumar, | Mahlknecht, Jürgen | Hdeib, Rouya | Mohapatra, Pranab Kumar
Contaminant vulnerability in the critical zones like groundwater (GW)-seawater (SW) continuum along the entire Gujarat coast was investigated for the first time through an extensive water monitoring survey. The prime focus of the study was to evaluate whether or not: i) seawater intrusion induced metal load translates to toxicity; ii) in the coastal groundwater, metal distribution follows the pattern of other geogenic and anthropogenic contaminants like NO₃- and F-; and iii) what future lies ahead pertaining to metal fate in association with saturation conditions of the coastal aquifers. The spatial distribution of contaminants depicts that the Gulf of Khambhat area is highly contaminated. Ecological risk assessment (ERA) indicates that the Gujarat coast is experiencing a high ecological risk compared to the southeast coast of India. Investigation results revealed that metals, pH, NO₃, and CO₃ are more vulnerable at the SW-GW mixing interface. An increase in pH is reflected in fewer ionic species of metals in the GW. Salinity ingress due to seawater intrusion (SWI) reduces the toxicities of all trace metals except Cu, attributed to the increase of Ca in GW, leading to dissociation of CuCO₃. Reactive species are dominant for Zn and Cd; and M-CO₃ ligands are dominant for Cu and Pb owing to the undersaturation of dolomite and calcite in the aquifer system. SWI tends to increase the metal load but the toxicity of metals varies with the density of industries, anthropogenic activities, changes in the mixing-induced saturation conditions, and intensive salt production across the coast. Multivariate analysis confirmed that the hydrogeochemical processes change due to GW-SW mixing and dictates over natural weathering. The ecological risk index (ERI) for the Arabian sea is experiencing moderate (300 ≥ ERI>150) to high ecological risk (ERI >600). Children population is likely to encounter a high health risk through ingestion and dermal exposure than adults. Overall, the study emphasizes the complexity of toxicity-related health impacts on coastal communities and suggests the dire need for frequent water monitoring along the coastal areas for quick realization of sustainable development goals.
اظهر المزيد [+] اقل [-]Assessing the emission consequences of an energy rebound effect in private cars in Israel
2022
Steren, Aviv | Rosenzweig, Stav | Rubin, Ofir D.
The UN Sustainable Development Goal, SDG 7.3, is to double the global rate of improvement in energy efficiency by 2030. To meet this and other energy targets, countries encourage the development and adoption of energy-efficient products. An extensively researched phenomenon in this context is the energy rebound effect, especially in transportation. However, the direct relationship between the energy rebound effect and car emission levels has barely been investigated. Understanding this relationship is important, because energy-related emissions are closely linked to mortality, morbidity, and climate change. We assess the emission consequences in the private car market in Israel of a rebound effect associated with a policy promoting energy-efficient cars. We find that the baseline rebound before introduction of the policy was 40%. In the following three periods marked by policy changes, it grew to 54%, 69%, and 88%. Using household data with specific car characteristics and usage, we calculate the added greenhouse gas (GHG) emission consequences of this rebound by the end of the studied period to be about 5% of the country's per-capita target. Notably, estimates for the emission consequences using “average car” values were almost twice as high. The reason for this gap derives from the co-dependance between car usage and car efficiency. We discuss the implications of this gap in meeting emission goals.
اظهر المزيد [+] اقل [-]Effect of hydrogeochemical behavior on groundwater resources in Holocene aquifers of moribund Ganges Delta, India: Infusing data-driven algorithms
2022
Saha, Asish | Pal, Subodh Chandra | Chowdhuri, Indrajit | Roy, Paramita | Chakrabortty, Rabin
One of the fundamental sustainable development goals has been recognized as having access to clean water for drinking purposes. In the Anthropocene era, rapid urbanization put further stress on water resources, and associated groundwater contamination expanded into a significant global environmental issue. Natural arsenic and related water pollution have already caused a burden issue on groundwater vulnerability and corresponding health hazard in and around the Ganges delta. A field based hydrogeochemical analysis has been carried out in the elevated arsenic prone areas of moribund Ganges delta, West Bengal, a part of western Ganga- Brahmaputra delta (GBD). New data driven heuristic algorithms are rarely used in groundwater vulnerability studies, specifically not yet used in the elevated arsenic prone areas of Ganges delta, India. Therefore, in the current study, emphasis has been given on integration of heuristic algorithms and random forest (RF) i.e., “RF-particle swarm optimization (PSO)”, “RF-grey wolf optimizer (GWO)” and “RF-grasshopper optimization algorithm (GOA)”, to identify groundwater vulnerable zones on the basis of field based hydrogeochemical parameters. In addition, correspondence health hazard of this area was assessed through human health hazard index. The spatial distribution of groundwater vulnerability revealed that middle-eastern and north-western part of the study area covered by very high and high, whereas central, western and south-western part are covered by very low and low vulnerability zones in outcomes of all the applied models. The evaluation result indicates that RF-GOA (AUC = 0.911) model performed the best considering testing dataset, and thereafter RF-GWO, RF-PSO and RF with AUC value is 0.901, 0.892 and 0.812 respectively. Findings also revealed the groundwater in this study region is quite unfavorable for drinking and irrigation purposes. The suggested models demonstrate their usefulness in foretelling sustainable groundwater resource management in various deltaic regions of the world through taking appropriate measures by policy-makers.
اظهر المزيد [+] اقل [-]The status of marine debris/litter and plastic pollution in the Caribbean Large Marine Ecosystem (CLME): 1980–2020
2022
Kanhai, La Daana K. | Asmath, Hamish | Gobin, Judith F.
Plastic pollution is one of several anthropogenic stressors putting pressure on ecosystems of the Caribbean Large Marine Ecosystem (CLME). A ‘Clean Ocean’ is one of the ambitious goals of the United Nations (UN) Decade of Ocean Science for Sustainable Development. If this is to be realized, it is imperative to build upon the work of the previous decades (1980–2020). The objectives of the present study were to assess the state of knowledge about: (i) the distribution, quantification, sources, transport and fate of marine debris/litter and microplastics in the coastal/marine environment of the CLME and, (ii) the effects of plastics on biodiversity. Snapshots, i.e., peer-reviewed studies and multi-year (1991–2020) marine debris data from International Coastal Cleanup (ICC) events, indicated that plastic debris was a persistent issue in multiple ecosystems and environmental compartments of the CLME. Collectively, a suite of approaches (debris categorization, remote sensing, particle tracking) indicated that plastic debris originated from a combination of land and marine-based sources, with the former more significant than the latter. Rivers were identified as an important means of transporting mismanaged land-based waste to the marine environment. Oceanic currents were important to the transport of plastic debris into, within and out of the region. Plastic debris posed a threat to the biodiversity of the CLME, with specific biological, physical, ecological and chemical effects being identified. Existing data can be used to inform interventions to mitigate the leakage of plastic waste to the marine environment. Given the persistent and transboundary nature of the issue, further elucidation of the problem, its causes and effects must be prioritized, while simultaneously harmonizing regional and international approaches.
اظهر المزيد [+] اقل [-]Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China’s vegetable systems: A meta-analysis
2021
Liu, Bin | Wang, Xiaozhong | Ma, Lin | Chadwick, Dave | Chen, Xinping
The combined application of organic and synthetic nitrogen (N) fertilizers is being widely recommended in China’s vegetable systems to reduce reliance on synthetic N fertilizer. However, the effect of substituting synthetic fertilizer with organic fertilizer on vegetable productivity (yield, N uptake and nitrogen use efficiency) and reactive nitrogen (Nr) losses (N₂O emission, N leaching and NH₃ volatilization) remains unclear. A meta-analysis was performed using peer-reviewed papers published from 2000 to 2019 to comprehensively assess the effects of combined application of organic and synthetic N fertilizers. The results indicate that overall, the vegetable yield, N₂O emission and NH₃ volatilization were not significantly changed, whereas N leaching was reduced by 44.6% and soil organic carbon (SOC) concentration increased by 12.5% compared to synthetic N fertilizer alone. Specifically, when synthetic N substitution rates (SRs) were ≤70%, vegetable yields and SOC concentration were increased by 5.5%–5.6% and 13.1–18.0%, and N leaching was reduced by 41.6%–48.1%. At the high substitution rate (SR>70%), vegetable yield was reduced by 13.6%, N₂O emission was reduced by 14.3%, and SOC concentration increased by 16.4%. Mixed animal-plant sources of organic N preferentially increased vegetable yield and SOC concentration, and reduced N₂O emission and N leaching compared with single sources of organic-N. Greenhouse gas (GHG) emission was decreased by 28.4%–34.9% by combined applications of organic and synthetic N sources, relative to synthetic N fertilizer alone. We conclude that appropriate rates (SR ≤ 70%) of combined applications of organic and synthetic N fertilizers could improve vegetable yields, decrease Nr and GHG emission, and facilitate sustainable development of coupled vegetable-livestock systems.
اظهر المزيد [+] اقل [-]Spatiotemporal dynamics and impacts of socioeconomic and natural conditions on PM2.5 in the Yangtze River Economic Belt
2020
Liu, Xiao-Jie | Xia, Si-You | Yang, Yu | Wu, Jing-fen | Zhou, Yan-Nan | Ren, Ya-Wen
The determination of the spatiotemporal patterns and driving factors of PM₂.₅ is of great interest to the atmospheric and climate science community, who aim to understand and better control the atmospheric linkage indicators. However, most previous studies have been conducted on pollution-sensitive cities, and there is a lack of large-scale and long-term systematic analyses. In this study, we investigated the spatiotemporal evolution of PM₂.₅ and its influencing factors by using an exploratory spatiotemporal data analysis (ESTDA) technique and spatial econometric model based on remote sensing imagery inversion data of the Yangtze River Economic Belt (YREB), China, between 2000 and 2016. The results showed that 1) the annual value of PM₂.₅ was in the range of 23.49–37.67 μg/m³ with an inverted U-shaped change trend, and the PM₂.₅ distribution presented distinct spatial heterogeneity; 2) there was a strong local spatial dependence and dynamic PM₂.₅ growth process, and the spatial agglomeration of PM₂.₅ exhibited higher path-dependence and spatial locking characteristics; and 3) the endogenous interaction effect of PM₂.₅ was significant, where each 1% increase in the neighbouring PM₂.₅ levels caused the local PM₂.₅ to increase by at least 0.4%. Natural and anthropogenic factors directly and indirectly influenced the PM₂.₅ levels. Our results provide spatial decision references for coordinated trans-regional air pollution governance as well as support for further studies which can inform sustainable development strategies in the YREB.
اظهر المزيد [+] اقل [-]Waste-to-energy nexus: A sustainable development
2020
Sharma, Surbhi | Basu, Soumen | Shetti, Nagaraj P. | Kamali, Mohammadreza | Walvekar, Pavan | Aminabhavi, Tejraj M.
An upsurge in global population due to speedy urbanization and industrialization is facing significant challenges such as rising energy-demand, enormous waste-generation and environmental deterioration. The waste-to-energy nexus based on the 5R principle (Reduce, Reuse, Recycle, Recovery, and Restore) is of paramount importance in solving these Gordian knots. This review essentially concentrates on latest advancements in the field of ‘simultaneous waste reduction and energy production’ technologies. The waste-to-energy approaches (thermal and biochemical) for energy production from the agricultural residues are comprehensively discussed in terms environmental, techno-economic, and policy analysis. The review will assess the loopholes in order to come up with more sophisticated technologies that are not only eco-friendly and cost-effective, but also socially viable. The waste-to-energy nexus as a paradigm for sustainable development of restoring waste is critically discussed considering future advancement plans and agendas of the policy-makers.
اظهر المزيد [+] اقل [-]High throughput analysis of 21 perfluorinated compounds in drinking water, tap water, river water and plant effluent from southern China by supramolecular solvents-based microextraction coupled with HPLC-Orbitrap HRMS
2020
Liang, Ming | Xian, Yanping | Wang, Bin | Hou, Xiangchang | Wang, Li | Guo, Xindong | Wu, Yuluan | Dong, Hao
The present work reported a high-throughput strategy for the analysis of 21 perfluorinated compounds (PFCs) in drinking water, tap water, river water and plant effluent from southern China by supramolecular solvent (SUPARS) vortex-mixed microextraction combined with high performance liquid chromatography-Orbitrap high resolution mass spectrometry (HPLC-Orbitrap HRMS). The SUPRAS without heating assistance is less solvent-consumption, meeting the requirements for green environmental protection and sustainable development. Parameters in the microextraction such as volume of dodecanol and tetrahydrofuran (THF), vortexing extraction and centrifugation time, salt concentration were investigated. The optimal extraction conditions were 250 μL of undecanol, 1.0 mL of THF and 20.0% (w/v, 4 g) NaCl. Under the optimum conditions, method limit of detection and method limit of quantitation in the ranges of 0.01–0.08 μg/L and 0.03–0.25 μg/L, good recoveries (72.5–117.8%) and intra-day precision (1.1–11.2%, n = 6), high enrichment factors (48–78) were obtained. The developed method was successfully applied for analysis of PFCs in 13 drinking water, tap water, river water and plant effluent samples collected from southern China. Perfluorobutane sulfonic acid was detected in one river water with concentration of 0.48 μg/L and 1H,1H,2H,2H-Perfluorooctane sulfonic acid was detected in one river water and two plant effluent samples with concentrations in the range of 0.14–0.67 μg/L.
اظهر المزيد [+] اقل [-]