خيارات البحث
النتائج 1 - 10 من 50
Response of sediment bacterial community to triclosan in subtropical freshwater benthic microcosms
2019
The response of sediment bacterial communities in subtropical freshwater benthic microcosms to sediment-associated triclosan (TCS; 28 d exposure) was analysed using Illumina high-throughput sequencing. This study highlights the interactive effects of TCS and the presence of benthic macroinvertebrates (Limnodrilus hoffmeisteri and Viviparidae bellamya) on sediment bacterial communities. Our results show that TCS alone significantly altered the taxonomic composition and decreased alpha diversity of sediment bacterial communities at concentrations ≥80 μg TCS/g dry weight (dw) sediment (sed). Regarding dominant phyla, TCS significantly reduced the relative abundance of Bacteroidetes and Firmicutes at these concentrations, whereas the relative abundance of Chloroflexi and Cyanobacteria increased. In the presence of benthic macroinvertebrates, the sediment bacterial community was affected by 8 μg TCS/g dw sed as well. However, the presence of benthic macroinvertebrates did not cause measurable changes to bacterial community in unspiked (i.e., control) sediment. These results indicate that TCS alone would not alter the sediment bacterial community at environmentally relevant concentrations (up till 8 μg/g dw sed), but may have an effect in combination with the presence of benthic macroinvertebrates. Therefore, we recommend to include benthic macroinvertebrates when assessing the response of sediment bacterial communities during exposure to environmental stress such as organic contaminants.
اظهر المزيد [+] اقل [-]LDPE microplastic films alter microbial community composition and enzymatic activities in soil
2019
Huang, Yi | Zhao, Yanran | Wang, Jie | Zhang, Mengjun | Jia, Weiqian | Qin, Xiao
Concerns regarding microplastic contamination have spread from aquatic environments to terrestrial systems with a growing number of studies have been reported. Notwithstanding, the potential effects on soil ecosystems remain largely unexplored. In this study, the effects of polyethylene microplastics on soil enzymatic activities and the bacterial community were evaluated, and the microbiota colonizing on microplastics were also investigated. Microplastic amendment (2000 fragments per kg soil) significantly increased the urease and catalase activities in soil after 15 days, and no discernible alteration of invertase activities was detected. Results from high-throughput sequencing of 16S rRNA revealed that the alpha diversities (richness, evenness, and diversity) of the microbiota in soil were not obviously changed by the PE amendment, whereas the diversity indexes of microbiota on plastic fragments were significantly lower than those in the control and amended soils. Different taxonomic composition was observed in between the control and amended soils after 90 days of incubation. Bacterial assemblages with distinct community structure colonized the PE microplastics. Additionally, several taxa including plastic-degrading bacteria and pathogens were more abundant on microplastics. Simultaneously, the predicted functional profiles showed that the pathways of amino acid metabolism and xenobiotics biodegradation and metabolism were higher on the microplastics. These results indicated that microplastics in soil, compared with those in aquatic environments, can also act as a distinct microbial habitat, potentially altering the ecological functions of soil ecosystems.
اظهر المزيد [+] اقل [-]Impacts of environmental factors on the whole microbial communities in the rhizosphere of a metal-tolerant plant: Elsholtzia haichowensis Sun
2018
Deng, Songqiang | Ke-tan, | Li, Longtai | Cai, Shenwen | Zhou, Yuyue | Liu, Yue | Guo, Limin | Chen, Lanzhou | Zhang, Dayi
Rhizospheric microbes play important roles in plant growth and heavy metals (HMs) transformation, possessing great potential for the successful phytoremediation of environmental pollutants. In the present study, the rhizosphere of Elsholtzia haichowensis Sun was comprehensively studied to uncover the influence of environmental factors (EFs) on the whole microbial communities including bacteria, fungi and archaea, via quantitative polymerase chain reaction (qPCR) and high-throughput sequencing. By analyzing molecular ecological network and multivariate regression trees (MRT), we evaluated the distinct impacts of 37 EFs on soil microbial community. Of them, soil pH, HMs, soil texture and nitrogen were identified as the most influencing factors, and their roles varied across different domains. Soil pH was the main environmental variable on archaeal and bacterial community but not fungi, explaining 25.7%, 46.5% and 40.7% variation of bacterial taxonomic composition, archaeal taxonomic composition and a-diversity, respectively. HMs showed important roles in driving the whole microbial community and explained the major variation in different domains. Nitrogen (NH4-N, NO3-N, NO2-N and TN) explained 47.3% variation of microbial population composition and 15.9% of archaeal taxonomic composition, demonstrating its influence in structuring the rhizospheric microbiome, particularly archaeal and bacterial community. Soil texture accounted for 10.2% variation of population composition, 28.9% of fungal taxonomic composition, 19.2% of fungal a-diversity and 7.8% of archaeal a-diversity. Rhizosphere only showed strong impacts on fungi and bacteria, accounting for 14.7% and 4.9% variation of fungal taxonomic composition and bacterial a-diversity. Spatial distance had stronger influence on bacteria and archaea than fungi, but not as significant as other EFs. For the first time, our study provides a complete insight into key influential EFs on rhizospheric microbes and how their roles vary across microbial domains, giving a hand for understanding the construction of microbial communities in rhizosphere.
اظهر المزيد [+] اقل [-]SPEAR indicates pesticide effects in streams - Comparative use of species- and family-level biomonitoring data
2009
Beketov, M.A. | Foit, K. | Schäfer, R.B. | Schriever, C.A. | Sacchi, A. | Capri, E. | Biggs, J. | Wells, C. | Liess, M.
To detect effects of pesticides on non-target freshwater organisms the Species at risk (SPEARpesticides) bioindicator based on biological traits was previously developed and successfully validated over different biogeographical regions of Europe using species-level data on stream invertebrates. Since many freshwater biomonitoring programmes have family-level taxonomic resolution we tested the applicability of SPEARpesticides with family-level biomonitoring data to indicate pesticide effects in streams (i.e. insecticide toxicity of pesticides). The study showed that the explanatory power of the family-level SPEAR(fm)pesticides is not significantly lower than the species-level index. The results suggest that the family-level SPEAR(fm)pesticides is a sensitive, cost-effective, and potentially European-wide bioindicator of pesticide contamination in flowing waters. Class boundaries for SPEARpesticides according to EU Water Framework Directive are defined to contribute to the assessment of ecological status of water bodies. We show that SPEARpesticides can be based on family-level biomonitoring data and is applicable for large-scale monitoring programmes to detect and quantify pesticide contamination.
اظهر المزيد [+] اقل [-]Emerging frontiers in microbe-mediated pesticide remediation: Unveiling role of omics and In silico approaches in engineered environment
2022
Malla, Muneer Ahmad | Dubey, Anamika | Raj, Aman | Ashwani Kumar, | Upadhyay, Niraj | Yadav, Shweta
The overuse of pesticides for augmenting agriculture productivity always comes at the cost of environment, biodiversity, and human health and has put the land, water, and environmental footprints under severe threat throughout the globe. Underpinning and maximizing the microbiome functions in pesticide-contaminated environments has become a prerequisite for a sustainable environment and resilient agriculture. It is imperative to elucidate the metabolic network of the microbial communities and environmental variables at the contaminated site to predict the best strategy for remediation and soil microbe-pesticide interactions. High throughput next-generation sequencing and in silico analysis allow us to identify and discern the members and characteristics of core microbiomes at the contaminated site. Integration of modern high throughput multi-omics investigations and informatics pipelines provide novel approaches and pathways to capitalize on the core microbiomes for enhancing environmental functioning and mitigation. The role of eco-genomics tools in visualising the microbial network, taxonomy, functional potential, and environmental variables in contaminated habitats is discussed in this review. The integrated role of the potential microbe identification as individual or consortia, mechanistic approach for pesticide degradation, identification of responsible enzymes/genes, and in silico approach is emphasized for the prospects of the area.
اظهر المزيد [+] اقل [-]Repeated insecticide pulses increase harmful effects on stream macroinvertebrate biodiversity and function
2021
Wiberg-Larsen, Peter | Nørum, Ulrik | Rasmussen, Jes Jessen
We exposed twelve mesocosm stream channels and four instream channels to one, two, and four pulses of the insecticide lambda-cyhalothrin (0.1 μg L⁻¹) applied at two day intervals, each pulse lasting 90 min. Unexposed controls were included. We monitored macroinvertebrate taxonomic composition in the channels and in deployed leaf packs one day before and 29 days after the first exposure. Further, we measured drift in and out of the channels and leaf litter decomposition. Lambda-cyhalothrin exposures induced significantly increased drift in both experiments especially for Gammarus pulex, Amphinemura standfussi, and Leuctra spp. Macroinvertebrate taxonomic composition increasingly changed with increasing number of lambda-cyhalothrin exposures being most pronounced in the mesocosm channels. Further, leaf decomposition significantly decreased with increasing number of exposures in the mesocosm channels. Our study showed that species with predicted highest sensitivity to lambda-cyhalothrin were primary drivers of significant changes in taxonomic composition lasting for at least one month despite continuous recolonization of exposed channels from upstream parts of the natural stream and from the water inlet in the mesocosm channels. The overall results highlight the importance of sequential exposures to insecticides for understanding the full impact of insecticides on macroinvertebrates at the community level in streams.
اظهر المزيد [+] اقل [-]Contribution of enrofloxacin and Cu2+ to the antibiotic resistance of bacterial community in a river biofilm
2021
Liu, Congcong | Yan, Huicong | Sun, Yang | Chen, Baoliang
Pollutants discharged from wastewater are the main cause of the spread of antibiotic resistance in river biofilms. There is controversy regarding the primary contribution of environmental selectors such as antibiotics and heavy metals to the development of antibiotic resistance in bacterial communities. Here, this study compared the effect of environmental safety concentration Cu²⁺ and enrofloxacin (ENR) on the evolution of antibiotic resistance by examining phenotypic characteristics and genotypic profiles of bacterial communities in a river biofilm, and then distinguished the major determinants from a comprehensive perspective. The pollution induced community tolerance in ENR-treated group was significantly higher than that in Cu²⁺-treated group (at concentration levels of 100 and 1000 μg/L). Metagenomic sequencing results showed that ENR significantly increased the number and total abundance of antibiotic resistance genes (ARGs), but there was no significant change in the Cu²⁺- treated group. Compared with Cu²⁺, ENR was the major selective agent in driving the change of taxonomic composition because the taxonomic composition in ENR was the most different from the original biofilm. Comparing and analyzing the prokaryotic composition, the phylum of Proteobacteria was enriched in both ENR and Cu²⁺ treated groups. Among them, Acidovorax and Bosea showed resistance to both pollutants. Linking taxonomic composition to ARGs revealed that the main potential hosts of fluoroquinolone resistance genes were Comamonas, Sphingopyxis, Bradyrhizobium, Afipia, Rhodopseudomonas, Luteimonas and Hoeflea. The co-occurrence of ARGs and metal resistance genes (MRGs) showed that the multidrug efflux pump was the key mechanism connecting MRGs and ARGs. Network analysis also revealed that the reason of Cu²⁺ selected for fluoroquinolones resistant bacterial communities was the coexistence of multidrug efflux gene and MRGs. Our research emphasizes the importance of antibiotics in promoting the development of antibiotic resistant bacterial communities from the perspective of changes in community structure and resistome in river biofilms.
اظهر المزيد [+] اقل [-]Occurrence and distribution of antimicrobial resistance genes in the soil of an industrial park in China: A metagenomics survey
2021
Zheng, Beiwen | Liu, Wenhong | Xu, Hao | Li, Junfeng | Jiang, Xiawei
As zoned areas of industries, industrial parks have great impacts on the environment. Several studies have demonstrated that chemical compounds and heavy metals released from industrial parks can contaminate soil, water, and air. However, as an emerging pollutant, antimicrobial resistance genes (ARGs) in industrial parks have not yet been investigated. Here, we collected soil samples from 35 sites in an industrial park in China and applied a metagenomics strategy to profile the ARGs and virulence factors (VFs). We further compared the relative abundance of ARGs between the sites (TZ_31–35) located in a beta-lactam antimicrobial-producing factory and other sites (TZ_1–30) in this industrial park. Metagenomic sequencing and assembly generated 14, 383, 065 contigs and 17, 631, 051 open reading frames (ORFs). Taxonomy annotation revealed Proteobacteria and Actinobacteria as the most abundant phylum and class, respectively. The 32 pathogenic bacterial genera listed in the virulence factor database (VFDB) were all identified from the soil metagenomes in this industrial park. In total, 685,354 ARGs (3.89% of the ORFs) and 272,694 virulence factors (VFs) (1.55% of the ORFs) were annotated. These ARGs exhibited resistance to several critically important antimicrobials, such as rifampins, fluroquinolones, and beta-lactams. In addition, no significant difference in the relative abundance of ARGs was observed between sites TZ_31–35 and TZ_1–30, indicating that ARGs have already disseminated widely in this industrial park. The present study gave us a better understanding of the whole picture of the resistome and virulome in the soil of the industrial park and suggested that we should treat the industrial park as a whole in the surveillance and maintenance of ARGs.
اظهر المزيد [+] اقل [-]Soil pH has a stronger effect than arsenic content on shaping plastisphere bacterial communities in soil
2021
Li, Huan-Qin | Shen, Ying-Jia | Wang, Wen-Lei | Wang, Hong-Tao | Li, Hu | Su, Jian-Qiang
Microplastic (MP) pollution is widespread in various ecosystems and is colonized by microbes that form biofilms with compositions and functions. However, compared with aquatic environments, the soil environment has been poorly studied in terms of the taxonomic composition of microbial communities and the factors influencing the community structure of microbes in the plastisphere. In the present study, a microcosm experiment was conducted to investigate the plastisphere bacterial communities of MP (polyvinyl chloride, PVC) in soils with different pH (4.62, 6.5, and 7.46) and arsenic (As) contents (13 and 74 mg kg⁻¹). Bacterial communities in the plastisphere were dominated by Proteobacteria and Firmicutes, with distinct compositions and structures compared with soil bacterial communities. Soil pH and As content significantly affected the plastisphere bacterial communities. Constrained analysis of principal coordinates and a structural equation model demonstrated that soil pH had a stronger influence on the dissimilarity and diversity of bacterial communities than did soil As content. Soil pH affected As speciation in soil and on MP. The concentration of dimethylarsinic acid (DMA) was significantly higher on MP than that in soil, indicating that As methylation occurred on MP. These results suggest that environmental fluctuations govern plastisphere bacterial communities with cascading effects on biogeochemical cycling of As in the soil ecosystems.
اظهر المزيد [+] اقل [-]The individual and combined effects of cadmium, polyvinyl chloride (PVC) microplastics and their polyalkylamines modified forms on meiobenthic features in a microcosm
2020
Wakkaf, Takwa | Allouche, Mohamed | Harrath, Abdel Halim | Mansour, Lamjed | Alwasel, Saleh | Mohamed Thameemul Ansari, Kapuli Gani | Beyrem, Hamouda | Sellami, Badreddine | Boufahja, Fehmi
A microcosm experiment was carried out to study the ecotoxicity and interactions between heavy metals and polyvinyl chloride microplastics. Fifteen treatments were tested and results were examined after one month. In details, this work aims to study the ecotoxicological effects of cadmium (10 and 20 mg kg⁻¹ Dry Weight DW), polyvinyl chloride (PVC) and its modified forms; PVC-DETA (PD) and PVC-TETA (PT) (20 and 40 mg kg⁻¹ DW), separately and in mixtures, on meiofauna from Bizerte lagoon (NE Tunisia) with focus on nematode features. The results obtained showed that individual treatments were toxic for meiofauna and particularly for free-living nematodes. No clear trends characterized the numerical responses but significant reductions were observed for diversity indices. Moreover, the binary combinations of contaminants have a lesser toxic effect compared to their individual effects. This effect could be related to the high-capacity chelating ability of PVC and its polymers against cadmium.
اظهر المزيد [+] اقل [-]