خيارات البحث
النتائج 1 - 10 من 98
Sediment spiking and equilibration procedures to achieve partitioning of uranium similar to contamination in tropical wetlands near a mine site
2022
Harford, Andrew J. | Simpson, Stuart L. | Humphrey, Christopher L. | Parry, David L. | Kumar, Anu | Chandler, Lisa | Stauber, Jennifer L. | van Dam, Rick A.
The derivation of sediment quality guideline values (SQGVs) presents significant challenges. Arguably the most important challenge is to conduct toxicity tests using contaminated sediments with physico-chemistry that represents real-world scenarios. We used a novel metal spiking method for an experiment that ultimately aims to derive a uranium SQGV. Two pilot studies were conducted to inform the final spiking design, i.e. percolating a uranyl sulfate solution through natural wetland sediments. An initial pilot study that used extended mixing equilibration phases produced hardened sediments not representative of natural sediments. A subsequent percolation method produced sediment with similar texture to natural sediment and was used as the method for spiking the sediments. The range of total recoverable uranium (TR-U) concentrations achieved was 8–3200 mg/kg. This reflected the concentrations found in natural wetlands and water management ponds found on a uranium mine site and was above natural levels. Dilute-acid extractable uranium (AE-U) concentrations were >80% of total concentrations, indicating that much of the uranium in the spiked sediment was labile and potentially bioavailable. The portion of TR-U extractable as AE-U was similar at the start and end of the 4.5-month field-deployment. Porewater uranium (PW–U) analyses indicated that partition coefficients (Kd) were 2000–20,000 L/kg, and PW-U was greater in post- than pre-field-deployed samples when TR-U was ≤1500 mg/kg, indicating the binding became weaker during the field-deployment period. At higher spiked-U concentrations, the PW-U was lower post-field-deployment. Comparing the physico-chemical data of the spiked sediments with environmental monitoring data from sediments in the vicinity of a uranium mining operation indicated that they were representative of sediments contaminated by mining and that the U-spiked sediments had a clear U concentration gradient. This confirmed the suitability of the spiking procedure for preparing sediments that were suitable for deriving a SQGV for uranium.
اظهر المزيد [+] اقل [-]Mercury vertical and horizontal concentrations in agricultural soils of a historically contaminated site: Role of soil properties, chemical loading, and cultivated plant species in driving its mobility
2021
Morosini, Cristiana | Terzaghi, Elisa | Raspa, Giuseppe | Zanardini, Elisabetta | Anelli, Simone | Armiraglio, Stefano | Petranich, Elisa | Covelli, Stefano | Di Guardo, Antonio
The long term vertical and horizontal mobility of mercury (Hg) in soils of agricultural areas of a historically contaminated Italian National Relevance Site (SIN Brescia-Caffaro) was investigated. The contamination resulted from the continuous discharge of Hg in irrigation waters by an industrial plant (Caffaro S.p.A), equipped with a mercury-cell chlor-alkali process. The contamination levels with depth ranged from about 20 mg/kg dry weight (d.w.) of soil in the top (plow) layer to less than 0.1 mg/kg d.w. at 1 m depth. The concentrations varied also spatially, up to one order of magnitude within the same field and showing a decreasing trend from the Hg source (i.e., irrigation ditches). The concentration profiles and gradients measured were explained considering Hg loading, soil properties, such as the texture, organic carbon content, pH and cation exchange capacity. A Selective Sequential Extraction (SSE) was also applied on soil samples from an ad hoc greenhouse experiment to investigate the role of different plant species in influencing Hg speciation in soils. Although most of the extracted Hg was included in scarcely mobile or immobile forms, some plant species (i.e., alfalfa) showed to importantly increase the soluble and exchangeable fractions with respect to the unplanted control soils, thus affecting mobility and potential bioavailability of Hg.
اظهر المزيد [+] اقل [-]Microplastics and trace metals in fish species of the Gulf of Mannar (Indian Ocean) and evaluation of human health
2021
Selvam, S. | Manisha, A. | Roy, Priyadarsi D. | Venkatramanan, S. | Chung, S.Y. | Muthukumar, P. | Jesuraja, K. | Elgorban, Abdallah M. | Ahmed, Bilal | Elzain, Hussam Eldin
The importance of microplastic (MPs) contamination in marine environments is reflected by increasing number of studies in fish species. Some even dedicated to the toxicological effects from the ingestion. Microplastics (MPs) and their trace metal composition were examined in the muscle and intestine of five commercially important fish species (i.e., Sufflamen fraenatus, Heniochus acuminatus, Atropus atropos, Pseudotriacanthus and Leiognathus brevirostris) from Thoothukudi at the Gulf of Mannar coast in south India. The abundance and morphology of MPs (size, shape, and texture) in muscle and intestinal were investigated by micro-Fourier Transform Infrared Spectroscopy (μ-FT-IR) and atomic force microscope (AFM). ICP-OES was used to investigate the adsorption/leaching of trace metals in microplastics in order to assess health risk for adults and children. Particles of 100–250 μm and white color dominated, and the mean abundances (items/100 g) of total MPs were more in Pseudotriacanthus (muscle: 51.2; intestine: 50.1) compared to Heniochus acuminatus (muscle: 9.6; intestine: 15), Leiognathus brevirostris (muscle: 12; intestine: 13.2) and Atropus atropus (muscle: 15.2; intestine: 44.1). Polyethylene (35.3%), polypropylene (27.2%), polyamide (nylon) (22.2%) and fiber (15.3%) represented the MPs present in muscles, and polyamide (nylon) (30.2%), polyethylene (28.1%), polypropylene (25.9%), and fiber (15.8%) composed the intestine MPs. We estimated possible consumption of 121–456 items of MPs/week by adults and about 19–68 items of MPs/week by children by considering the sizes of safe meals. Zn, Cu, Mn and Cr in these fish species reflected influence of the sewage waste. However, the non-carcinogenic risk evaluated through EDI, THQ, HI, and CR did not suggest any immediate health problem for the consumers.
اظهر المزيد [+] اقل [-]Sediment characterisation and spatial distribution of heavy metals in the sediment of a tropical freshwater wetland of Indo-Burmese province
2019
Kalita, Suravi | Sarma, Hari Prasad | Devi, Arundhuti
The sediment characterisation of wetlands belonging to the Northeastern Region of India particularly regarding the assessment of sediment carbon stock is very scanty. The presently available literature on the wetlands cannot be employed as a common model for managing the wetlands of the Northeastern Region of India as wetlands are a sensitive ecosystem with a different origin or endogenous interventions. Thereby, this research was conducted on Deepor Beel for investigating the spatial and seasonal variation of sediment parameters, the relationship between the parameters and pollution status of the wetland. Results revealed that the study area is of an acidic nature with a sandy clay loam type texture. Organic carbon, total nitrogen and available nitrogen were higher in sediments in the monsoon period. The mean stock of the sediment carbon pool of Deepor Beel is estimated to be 2.5 ± 0.7 kg m−2. The average non-residual fraction percentage (63.2%) of Pb was higher than the residual fraction. Zn content ∼490 mg kg−1 exceeding its effect range medium (ERM) was determined to suggest frequent biological adverse effects. Highest metal enrichment factor (EF) values were shown by Zn and Pb, which ranged between 78 and 255. Risk assessment code (RAC) values of Pb between 21 and 29% indicated its high bio-accessibility risk. Pearson's coefficient matrix revealed a low degree of positive correlation between organic carbon content and metal concentration. Principal component analysis revealed that the first component comprising of EC, basic cations and metals accounted for 62.3% of variance while the second component (OM, OC, TN, AN, AP) and the third component (pH) accounted for 21.8% and 7.0% of the variance, respectively. The present study revealed the adverse impact of human inputs on the Deepor Beel quality status.
اظهر المزيد [+] اقل [-]Microstructural characteristics of naturally formed hardpan capping sulfidic copper-lead-zinc tailings
2018
Liu, Yunjia | Wu, Songlin | Nguyen, Tuan A.H. | Southam, Gordon | Chan, Ting-Shan | Lu, Ying-Rui | Huang, Longbin
A massive and dense textured layer (ca. 35–50 cm thick) of hardpan was uncovered at the top layer, which capped the unweathered sulfidic Cu-Pb-Zn tailings in depth and physically supported gravelly soil root zones sustaining native vegetation for more than a decade. For the purpose of understanding functional roles of the hardpan layer in the cover profile, the present study has characterized the microstructures of the hardpan profile at different depth compared with the tailings underneath the hardpans. A suit of microspectroscopic technologies was deployed to examine the hardpan samples, including field emission-scanning electron microscopy coupled with energy dispersive spectroscopy (FE-SEM-EDS), X-ray diffraction (XRD) and synchrotron-based X-ray absorption fine structure spectroscopy (XAFS). The XRD and Fe K-edge XAFS analysis revealed that pyrite in the tailings had been largely oxidised, while goethite and ferrihydrite had extensively accumulated in the hardpan. The percentage of Fe-phyllosilicates (e.g., biotite and illite) decreased within the hardpan profile compared to the unweathered tailings beneath the hardpan. The FE-SEM-EDS analysis showed that the fine-grained Ca-sulfate (possibly gypsum) evaporites appeared as platelet-shaped that deposited around pyrite, dolomite, and crystalline gypsum particles, while Fe-Si gels exhibited a needle-like texture that aggregated minerals together and produced contiguous coating on pyrite surfaces. These microstructural findings suggest that the weathering of pyrite and Fe-phyllosilicates coupled with dolomite dissolution may have contributed to the formation of Ca-sulfate/gypsum evaporites and Fe-Si gels. These findings have among the first to uncover the microstructure of hardpan formed at the top layer of sulfidic Cu-Pb-Zn tailings, which physically capped the unweathered tailings in depth and supported root zones and native vegetation under semi-arid climatic conditions.
اظهر المزيد [+] اقل [-]Sources of hydrocarbons in urban road dust: Identification, quantification and prediction
2016
Mummullage, Sandya | Egodawatta, Prasanna | Ayoko, G. A. (Godwin A.) | Goonetilleke, Ashantha
Among urban stormwater pollutants, hydrocarbons are a significant environmental concern due to their toxicity and relatively stable chemical structure. This study focused on the identification of hydrocarbon contributing sources to urban road dust and approaches for the quantification of pollutant loads to enhance the design of source control measures. The study confirmed the validity of the use of mathematical techniques of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for source identification and principal component analysis/absolute principal component scores (PCA/APCS) receptor model for pollutant load quantification. Study outcomes identified non-combusted lubrication oils, non-combusted diesel fuels and tyre and asphalt wear as the three most critical urban hydrocarbon sources. The site specific variabilities of contributions from sources were replicated using three mathematical models. The models employed predictor variables of daily traffic volume (DTV), road surface texture depth (TD), slope of the road section (SLP), effective population (EPOP) and effective impervious fraction (EIF), which can be considered as the five governing parameters of pollutant generation, deposition and redistribution. Models were developed such that they can be applicable in determining hydrocarbon contributions from urban sites enabling effective design of source control measures.
اظهر المزيد [+] اقل [-]Streptomyces pactum and sulfur mediated the antioxidant enzymes in plant and phytoextraction of potentially toxic elements from a smelter-contaminated soils
2019
The toxic potentially toxic metals elements (PTEs) discharged from industrial activities and agricultural practices persistently pose multiple hazards to environment and living organisms. Microbe-assisted phytoremediation provide an effective approach to remediate PTEs-contaminated soils. A phytoextraction process involved the application of Streptomyces pactum (Act12, 1.0, 2.0 and 3.0 g kg⁻¹ dry soil, respectively) alone/jointly with sulfur was executed. The main texture of the tested soil was sandy loam and with a pH 8.27. The obtained results showed that the leaf pigments and plant biomass were improved after the application of the Act12, while the shoot fresh weight, chlorophyll a and chlorophyll b decreased by 57.8, 38.2 and 40.7%, respectively, after treatment with sulfur. Similarly, sulfur application facilitated the malondialdehyde (MDA) production by 18.4–33.6% compared to the control (no amendments). Both peroxidase (POD) and superoxide dismutase (SOD) activities were boosted, while the catalase (CAT) activity was suppressed with Act12 alone/jointly with sulfur treatment. The sulfur combined with elevated Act12 levels notably increased the cadmium (Cd) and zinc (Zn) concentrations both in shoots and roots, while the elemental extraction amount showed the removal efficiency following the order: Act12 alone > control > Act12 jointly with sulfur. Taken together, the results suggested that Streptomyces pactum and sulfur assisted the phytoremediation process, while further studies should be conducted in the field to test practical application.
اظهر المزيد [+] اقل [-]Response of benthic macrofauna to multiple anthropogenic pressures in the shallow coastal zone south of Sfax (Tunisia, central Mediterranean Sea)
2019
Mosbahi, Nawfel | Serbaji, Mohamed Moncef | Pezy, Jean-Philippe | Neifar, Lassad | Dauvin, Jean-Claude
Anthropogenic activities including coastal industries, urbanization, extensive agriculture and aquaculture as well as their cumulative impacts represent major sources of perturbation of marine coastal systems. Macrobenthic communities are useful ecological indicators for monitoring the health status of marine environments (or polluted environments). The present study reports, for the first time, the response of benthic macrofauna sampled during two years survey (2015–2016) to multiple anthropogenic pressures on the coastal zone south of Sfax (Tunisia). A total of 12 stations were monitored seasonally at locations downstream from the main potential sources of disturbance. 106 macrobenthos taxa, belonging to six animal phyla and 70 families, were identified with a dominance of polychaetes (42%), crustaceans (35%) and molluscs (18%). We used an ANOVA test and cluster analysis to identify spatial gradient linked to environmental and anthropogenic factors, including depth, sedimentary texture and anthropogenic activities (i.e. phosphogypsum discharges).The macrofauna present lowest species number and abundance on stations undergoing anthropogenic inputs, which are extremely polluted by heavy metals (Cd, Cu, F and N) and excess of organic matter. Univariate parameters reveal a general trend of increasing species diversity with increasing distance from the pollution source. The polluted stations are strongly dominated by carnivores, and selective deposit feeders, and more closely linked to the availability of trophic resources than to anthropogenic constraints. The seasonal changes in macrobenthic abundance, diversity indices and community structure are mainly linked to the biological cycle (e.g. recruitment events) of the dominant species. Biotic indices (AMBI and BO2A) classified the coastal zone south of Sfax as moderate and good ecological status. This study suggests that initiating a long-term monitoring programme would improve our understanding of the temporal changes of macrobenthic communities of this ecosystem, contributing to the assessment of effective management and conservation measures in this disturbed area.
اظهر المزيد [+] اقل [-]Development of a nematode offspring counting assay for rapid and simple soil toxicity assessment
2018
Kim, Shin Woong | Moon, Jongmin | Jeong, Seung-Woo | An, Youn-Joo
Since the introduction of standardized nematode toxicity assays by the American Society for Testing and Materials (ASTM) and International Organization for Standardization (ISO), many studies have reported their use. Given that the currently used standardized nematode toxicity assays have certain limitations, in this study, we examined the use of a novel nematode offspring counting assay for evaluating soil ecotoxicity based on a previous soil-agar isolation method used to recover live adult nematodes. In this new assay, adult Caenorhabditis elegans were exposed to soil using a standardized toxicity assay procedure, and the resulting offspring in test soils attracted by a microbial food source in agar plates were counted. This method differs from previously used assays in terms of its endpoint, namely, the number of nematode offspring. The applicability of the bioassay was demonstrated using metal-spiked soils, which revealed metal concentration-dependent responses, and with 36 field soil samples characterized by different physicochemical properties and containing various metals. Principal component analysis revealed that texture fraction (clay, sand, and silt) and electrical conductivity values were the main factors influencing the nematode offspring counting assay, and these findings warrant further investigation. The nematode offspring counting assay is a rapid and simple process that can provide multi-directional toxicity assessment when used in conjunction with other standard methods.
اظهر المزيد [+] اقل [-]Examination of factors dominating the sediment-water diffusion flux of DDT-related compounds measured by passive sampling in an urbanized estuarine bay
2016
Feng, Yan | Wu, Chen-Chou | Bao, Lian-Jun | Shi, Lei | Song, Lin | Zeng, E. Y. (Eddy Y.)
The fate of hydrophobic organic compounds in aquatic environment are largely determined by their exchange at sediment-water interface, which is highly dynamic and subject to rapidly evolving environmental conditions. In turn, environmental conditions may be governed by both physicochemical parameters and anthropogenic events. To examine the importance of various impact factors, passive sampling devices were deployed at the seafloor of Hailing Bay, an urbanized estuarine bay in Guangdong Province of South China to measure the sediment-water diffusion fluxes of several metabolites of dichlorodiphenyltrichloroethane (DDT), p,p′-DDE, p,p′-DDD and o,p′-DDD. The physicochemical properties of water (temperature, pH, salinity and dissolved oxygen) and surface sediment (sediment organic matter, physical composition, pH, water content, colony forming unit and catalase activity) were also measured. The results showed that the diffusion fluxes of o,p′-DDD, p,p′-DDD and p,p′-DDE at sites A1 and A2 near a fishing boat maintenance facility ranged from 0.42 to 4.73 ng m−2 d−1 (from sediment to overlying water), whereas those at offshore sites varied between −0.03 and −3.02 ng m−2 d−1 (from overlying water to sediment), implicating A1 and A2 as the sources of the target compounds. The distribution patterns of the diffusion fluxes of the target compounds were different from those of water and sediment parameters (water temperature, salinity, sediment texture, pH, colony forming unit and catalase activity) at six sampling sites. This finding suggested that none of these parameters were critical in dictating the sediment-water diffusion fluxes. Besides, decreases in the contents of kerogen and black carbon by 6.7% and 11% would enhance the diffusion fluxes of the target compounds by 11–14% and 12–23%, respectively, at site A1, indicating that kerogen and black carbon were the key factors in mediating the sediment–water diffusion fluxes of DDT-related compounds in field environments.
اظهر المزيد [+] اقل [-]