خيارات البحث
النتائج 1 - 10 من 402
Efficacy of Mn-doped ZnO towards Removal of Congo Red Dye under UV Exposure: Isotherm, Kinetics, Thermodynamics and Optimization Study
2023
Roy, Tapas | Mondal, Naba Kumar | Mitra, Partha
Discharge of synthetic dyes from industries without treatment leads to major environmental problems. Present research highlighted the Mn-doped ZnO along with UV-induced photo degradation of Congo red (CR) dye through batch study. The synthesized Mn-doped ZnO (MDZO) was characterized by Transmission electron microscope (TEM) and Fourier transform infrared spectroscopy (FTIR). The results revealed that MDZO along with UV exposure degraded the CR dye up to 99.3% at concentration 4 mg/L, pH (7), adsorbent dose (0.6 g/L) and contact time (30 min). The degradation data nicely fitted with pseudo-secondary kinetics and the thermodynamic study suggest the said reaction is exothermic in nature. A statistical method, central composite design (CCD) was used to screen out the optimized condition of dye degradation. The interactions of main factors and optimal conditions were also evaluated by 3D surface plots. The statistical output clearly demonstrates that the dye degradation data is nicely fitted with very high goodness of fit and F value (86.19). Present research clearly suggested that Mn-doped ZnO along with UV could be an effective treatment towards degradation of Congo red dye.
اظهر المزيد [+] اقل [-]Synthesis and applications of bismuth-impregnated biochars originated from spent coffee grounds for efficient adsorption of radioactive iodine: A mechanism study
2022
Kwak, Jinwoo | Lee, Sang-Ho | Shin, Jaegwan | Lee, Yong-Gu | Kim, Sangwon | Son, Changgil | Ren, Xianghao | Shin, Jae-Ki | Park, Yongeun | Chon, Kangmin
The adsorption of radioactive iodine, which is capable of presenting high mobility in aquatic ecosystems and generating undesirable health effects in humans (e.g., thyroid gland dysfunction), was comprehensively examined using pristine spent coffee ground biochar (SCGB) and bismuth-impregnated spent coffee ground biochar (Bi@SCGB) to provide valuable insights into the variations in the adsorption capacity and mechanisms after pretreatment with Bi(NO₃)₃. The greater adsorption of radioactive iodine toward Bi@SCGB (adsorption capacity (Qₑ) = 253.71 μg/g) compared to that for SCGB (Qₑ = 23.32 μg/g) and its reduced adsorption capability at higher pH values provide evidence that the adsorption of radioactive iodine with SCGB and Bi@SCGB is strongly influenced by the presence of bismuth materials and the electrostatic repulsion between their negatively charged surfaces and negatively charged radioactive iodine (IO₃⁻). The calculated R² values for the adsorption kinetics and isotherms support that chemisorption plays a crucial role in the adsorption of radioactive iodine by SCGB and Bi@SCGB in aqueous phases. The adsorption of radioactive iodine onto SCGB was linearly correlated with the contact time (h¹/²), and the diffusion of intra-particle predominantly determined the adsorption rate of radioactive iodine onto Bi@SCGB (Cₛₜₐgₑ II (129.20) > Cₛₜₐgₑ I (42.33)). Thermodynamic studies revealed that the adsorption of radioactive iodine toward SCGB (ΔG° = −8.47 to −7.83 kJ/mol; ΔH° = −13.93 kJ/mol) occurred exothermically and that for Bi@SCGB (ΔG° = −15.90 to −13.89 kJ/mol; ΔH° = 5.88 kJ/mol) proceeded endothermically and spontaneously. The X-ray photoelectron spectroscopy (XPS) analysis of SCGB and Bi@SCGB before and after the adsorption of radioactive iodine suggest the conclusion that the change in the primary adsorption mechanism from electrostatic attraction to surface precipitation upon the impregnation of bismuth materials on the surfaces of spent coffee ground biochars is beneficial for the adsorption of radioactive iodine in aqueous phases.
اظهر المزيد [+] اقل [-]Assessing the oxidative potential of PAHs in ambient PM2.5 using the DTT consumption assay
2021
Kramer, Amber L. | Dorn, Shelby | Perez, Allison | Roper, Courtney | Titaley, Ivan A. | Cayton, Kaylee | Cook, Ronald P. | Cheong, Paul H-Y | Massey Simonich, Staci L.
The oxidative potential (OP) of atmospheric fine particulate matter (PM₂.₅) has been linked to organic content, which includes polycyclic aromatic hydrocarbons (PAHs). The OP of 135 individual PAHs (including six subclasses) was measured using the dithiolthreitol (DTT) consumption assay. The DTT assay results were used to compute the concentration of each PAH needed to consume 50% of the DTT concentration in the assay (DTT₅₀), and the reduction potential of the PAHs (ΔGᵣₓₙ). Computed reduction potential results were found to match literature reduction potential values (r² = 0.97), while DTT₅₀ results had no correlations with the computed ΔGᵣₓₙ values (r² < 0.1). The GINI equality index was used to assess the electron distribution across the surface of unreacted and reacted PAHs. GINI values correlated with ΔGᵣₓₙ in UPAH, HPAH, and OHPAH subclasses, as well as with all 135 PAHs in this study but did not correlate with DTT₅₀, indicating that electron dispersion is linked to thermodynamic reactions and structural differences in PAHs, but not linked to the OP of PAHs. Three ambient PM₂.₅ filters extracts were measured in the DTT assay, alongside mixtures of analytical standards prepared to match PAH concentrations in the filter extracts to test if the OP follows an additive model of toxicity. The additive prediction model did not accurately predict the DTT consumption in the assay for any of the prepared standard mixtures or ambient PM₂.₅ filter extracts, indicating a much more complex model of toxicity for the OP of PAHs in ambient PM₂.₅. This study combined computed molecular properties with toxicologically relevant assay results to probe the OP of anthropogenically driven portions of ambient PM₂.₅, and results in a better understanding of the complexity of ambient PM₂.₅ OP.
اظهر المزيد [+] اقل [-]Competitive adsorption of pharmaceuticals in lake water and wastewater effluent by pristine and NaOH-activated biochars from spent coffee wastes: Contribution of hydrophobic and π-π interactions
2021
Shin, Jaegwan | Kwak, Jinwoo | Lee, Yong-Gu | Kim, Sangwon | Choi, Minhee | Bae, Sungjun | Lee, Sang-Ho | Park, Yongeun | Chon, Kangmin
This study investigated the competitive adsorption mechanisms of pharmaceuticals (i.e., naproxen, diclofenac, and ibuprofen) toward the pristine and NaOH-activated biochars from spent coffee wastes (SCW) in lake water and wastewater effluent. The kinetic and isotherm studies revealed that the improved physicochemical characteristics and physically homogenized surfaces of the pristine SCW biochar through the chemical activation with NaOH were beneficial to the adsorption of pharmaceuticals (competitive equilibrium adsorption capacity (Qₑ, ₑₓₚ): NaOH-activated SCW biochar (61.25–192.07 μmol/g) > pristine SCW biochar (14.81–20.65 μmol/g)). The adsorptive removal of naproxen (Qₑ, ₑₓₚ = 14.81–18.81 μmol/g), diclofenac (Qₑ, ₑₓₚ = 15.73–20.00 μmol/g), and ibuprofen (Qₑ, ₑₓₚ = 16.20–20.65 μmol/g) for the pristine SCW biochar showed linear correlations with their hydrophobicity (log D at pH 7.0: ibuprofen (1.71) > diclofenac (1.37) > naproxen (0.25)). However, their Qₑ, ₑₓₚ values for the NaOH-activated SCW biochar (naproxen (176.39–192.07 μmol/g) > diclofenac (78.44–98.74 μmol/g) > ibuprofen (61.25–80.02 μmol/g)) were inversely correlated to the order of their log D values. These results suggest that the reinforced aromatic structure of the NaOH-activated SCW biochar facilitated the π-π interaction. The calculated thermodynamic parameters demonstrated that the competitive adsorption of pharmaceuticals on the NaOH-activated SCW biochar compared to pristine SCW biochar occurred more spontaneously over the entire pH (5.0–11.0) and ionic strength (NaCl: 0–0.125 M) ranges. These observations imply that the NaOH-activated SCW biochar might be potentially applicable for the removal of pharmaceuticals in lake water and wastewater effluent.
اظهر المزيد [+] اقل [-]Preparation of 2D nitrogen-doped magnetic Fe3C/C by in-situ self-assembled double-template method for enhanced removal of Cr(VI)
2020
Su, Qiaohong | Su, Zhi | Xie, Wenyu | Tian, Chen | Su, Xintai | Lin, Zhang
Porous carbon, which can be functionalized, is considered as a potential carbon material. Herein, two-dimensional (2D) nitrogen-doped magnetic Fe₃C/C (NMC) was prepared by a simple carbonization method using potassium humate (HA-K) as raw material. Remarkably, two templates, g-C₃N₄ and KCl, were formed in situ during the carbonization process, which provide the necessary conditions for the formation of 2D NMC. The NMC was comprehensively studied by different characterization methods. The results show that NMC has a large surface area and mesoporous structure. The prepared NMC-0.50 was used to test the removal performance of Cr(VI). The effects of pH value, coexisting ions and time on Cr(VI) removal performance were investigated, and the adsorption kinetics, isotherm and thermodynamics were studied. The results showed that the adsorption isotherm model of NMC-50 accorded with the Langmuir model, and the maximum adsorption capacity was 423.73 mg g⁻¹. The reaction mechanism of Cr(VI) is adsorption and redox reaction. In addition, NMC-0.50 exhibit high selectivity, separability and regeneration performance. A convenient means for the synthesis of NMC was designed in this work, and demonstrate that NMC has practical value as an adsorbent.
اظهر المزيد [+] اقل [-]Removal characteristics of a composite active medium for remediation of nitrogen-contaminated groundwater and metagenomic analysis of degrading bacteria
2019
Li, Shuo | Zhang, Yuling | Qian, Hong | Deng, Zhiqun | Wang, Xi | Yin, Siqi
To investigate the removal characteristics of ammonium-nitrogen (NH₄⁺-N), nitrite-nitrogen (NO₂⁻-N), nitrate-nitrogen (NO₃⁻-N), and total nitrogen from groundwater by a degradable composite active medium, kinetics, thermodynamics, and equilibrium adsorption, experiments were performed using scoria and degrading bacteria immobilized on scoria. Removal of NH₄⁺-N, NO₂⁻-N, and NO₃⁻-N was conducted in adsorption experiments using different times, initial concentrations, pH values, and groundwater chemical compositions (Ca²⁺, Mg²⁺, HCO₃⁻, CO₃²⁻, Fe²⁺, Mn²⁺, and SO₄²⁻). The results showed that the removal of nitrogen by the composite active medium was obviously better than that of scoria alone. The removal rates of NH₄⁺-N (C₀ = 5 mg/L), NO₂⁻-N (C₀ = 5 mg/L), and NO₃⁻-N (C₀ = 100 mg/L) by the composite active medium within 1 h were 96.05%, 82.40%, and 83.16%, respectively. The adsorption kinetics were well fitted to a pseudo-second order model, whereas the equilibrium adsorption agreed with the Freundlich model. With changes in the pH, variation in the removal could be attributed to the combined effect of hydrolysis and competitive ion adsorption, and the optimum pH was 7. Different concentration conditions, hardness, alkalinity, anions, and cations showed different promoting and inhibiting effects on the removal of nitrogen. A careful examination of ionic concentrations in adsorption batch experiments suggested that the sorption behavior of nitrogen onto the immobilized medium was mainly controlled by ion exchange. The degrading bacteria on the scoria surface were eluted and analyzed by metagenomic sequencing. There were significant differences in the number of operational taxons, relative abundances, and community diversity among degrading bacteria after adsorption of the three forms of nitrogen. The relative abundance of degrading bacteria was highest after NO₃⁻-N removal, and the diversity was highest after NO₂⁻-N removal. Pseudomonas and Serratia were the dominant genera that could efficiently remove NH₄⁺-N and NO₂⁻-N.
اظهر المزيد [+] اقل [-]Fabrication of mesoporous nanocomposite of graphene oxide with magnesium ferrite for efficient sequestration of Ni (II) and Pb (II) ions: Adsorption, thermodynamic and kinetic studies
2019
Nawanīta Kaura, | Manpreet Kaur, | Singh, Dhanwinder
Mesoporous nanocomposite of MgFe₂O₄ nanoparticles (NPs) and graphene oxide (GO) was synthesized using facile sonication method. Its potential was tested for the removal of Ni (II) and Pb (II) ions from water. The 2:1 w/w ratio of MgFe₂O₄:GO was optimum for the maximum removal of metal ions. Nanocomposite was characterized employing XRD, FT-IR, VSM, SEM-EDX, XPS, TEM and BET analyses. It possessed higher surface area (63.0 m² g⁻¹) than pristine NPs. Batch experiments were performed to study the effect of process parameters viz. pH, dose, contact time, initial metal ion concentration, co-existing ions and temperature. Statistical parameters were also determined. Langmuir, Temkin and Freundlich models were followed in perfect way. Langmuir model showed the monolayer adsorption of metal ions onto the homogeneous surface of nanocomposite with maximum adsorption capacity of 100.0 mg g⁻¹ and 143.0 mg g⁻¹ for Ni (II) and Pb (II) ions respectively, which was higher than the same for MgFe₂O₄ NPs and GO. Kinetic studies demonstrated that the pseudo-second order model well described the adsorption process. The ΔS° and ΔG° values revealed spontaneous nature of adsorption process. Positive ΔH° values using MgFe₂O₄ NPs and nanocomposite indicated endothermic removal; whereas using GO the removal was exothermic. The observed trend for coexisting ions correlated with hydrated ion radii. Efficiency of the adsorbents was also tested for realistic nickel electroplating industrial effluent. Apart from the higher adsorption potential of nanofabricated composite, its magnetic properties are advantageous in utilizing metal loaded nanocomposite for adsorption-desorption cycles for reuse.
اظهر المزيد [+] اقل [-]Multi-method assessment of the intrinsic biodegradation potential of an aquifer contaminated with chlorinated ethenes at an industrial area in Barcelona (Spain)
2019
Blázquez-Pallí, Natàlia | Rosell, Mónica | Varias, Joan | Bosch, Marçal | Soler, Albert | Vicent, Teresa | Marco-Urrea, Ernest
The bioremediation potential of an aquifer contaminated with tetrachloroethene (PCE) was assessed by combining hydrogeochemical data of the site, microcosm studies, metabolites concentrations, compound specific-stable carbon isotope analysis and the identification of selected reductive dechlorination biomarker genes. The characterization of the site through 10 monitoring wells evidenced that leaked PCE was transformed to TCE and cis-DCE via hydrogenolysis. Carbon isotopic mass balance of chlorinated ethenes pointed to two distinct sources of contamination and discarded relevant alternate degradation pathways in the aquifer. Application of specific-genus primers targeting Dehalococcoides mccartyi species and the vinyl chloride-to-ethene reductive dehalogenase vcrA indicated the presence of autochthonous bacteria capable of the complete dechlorination of PCE. The observed cis-DCE stall was consistent with the aquifer geochemistry (positive redox potentials; presence of dissolved oxygen, nitrate, and sulphate; absence of ferrous iron), which was thermodynamically favourable to dechlorinate highly chlorinated ethenes but required lower redox potentials to evolve beyond cis-DCE to the innocuous end product ethene. Accordingly, the addition of lactate or a mixture of ethanol plus methanol as electron donor sources in parallel field-derived anoxic microcosms accelerated dechlorination of PCE and passed cis-DCE up to ethene, unlike the controls (without amendments, representative of field natural attenuation). Lactate fermentation produced acetate at near-stoichiometric amounts. The array of techniques used in this study provided complementary lines of evidence to suggest that enhanced anaerobic bioremediation using lactate as electron donor source is a feasible strategy to successfully decontaminate this site.
اظهر المزيد [+] اقل [-]Rapidly probing the interaction between sulfamethazine antibiotics and fulvic acids
2018
Xu, Juan | Hu, Yan-Yun | Li, Xiu-Yan | Chen, Jie-Jie | Sheng, Guo-Ping
Antibiotics residuals in the environments receive wide concerns due to the high risk of generating antibiotic resistance. Natural organic matters (NOM) existed in the environments are considered to have the capacity of binding with organic contaminants, consequently influencing their speciation and transformation in the natural environments. To assess the migration of antibiotics in the environments, it is crucial to understand the binding mechanisms between NOM and antibiotics, which is still unclear due to the limit of available research methods. In this study, the interaction between fulvic acids (FA), one of the main components of NOM, and sulfamethazine (SMZ) was characterized by nuclear magnetic resonance (NMR) combined with surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) technology. The parameters related to kinetics and thermodynamics of the interaction were determined, and the possible mechanisms driving the interaction were also proposed. In addition, density functional theory (DFT) was used to predict the binding mode between FA and SMZ to reveal the interaction mechanism. Results indicate that FA can effectively bound with SMZ to form a stable complex with a binding constant at the level of 10³ L/mol. The kinetic parameters including association and dissociation constants were 29.4 L/mol/s and 6.64 × 10⁻³ 1/s, respectively. Hydrophobic interaction might play significant roles in the binding interaction with ancillary contribution of π-π conjunction arising from the aromatic rings stacking of FA and SMZ.
اظهر المزيد [+] اقل [-]Mechanistic insight into degradation of endocrine disrupting chemical by hydroxyl radical: An experimental and theoretical approach
2017
Xiao, Ruiyang | Gao, Lingwei | Wei, Zongsu | Spinney, Richard | Luo, Shuang | Wang, Donghong | Dionysiou, Dionysios D. | Tang, Chong–Jian | Yang, Weichun
Advanced oxidation processes (AOPs) based on formation of free radicals at ambient temperature and pressure are effective for treating endocrine disrupting chemicals (EDCs) in waters. In this study, we systematically investigated the degradation kinetics of bisphenol A (BPA), a representative EDC by hydroxyl radical (OH) with a combination of experimental and theoretical approaches. The second–order rate constant (k) of BPA with OH was experimentally determined to be 7.2 ± 0.34 × 109 M−1 s−1 at pH 7.55. We also calculated the thermodynamic and kinetic behaviors for the bimolecular reactions by density functional theory (DFT) using the M05–2X method with 6–311++G** basis set and solvation model based on density (SMD). The results revealed that H–abstraction on the phenol group is the most favorable pathway for OH. The theoretical k value corrected by the Collins–Kimball approach was determined to be 1.03 × 1010 M−1 s−1, which is in reasonable agreement with the experimental observation. These results are of fundamental and practical importance in understanding the chemical interactions between OH and BPA, and aid further AOPs design in treating EDCs during wastewater treatment processes.
اظهر المزيد [+] اقل [-]