خيارات البحث
النتائج 1 - 10 من 13
Phytotoxicity and bioconcentration of microcystins in agricultural plants: Meta-analysis and risk assessment
2021
Zhang, Yanyan | Whalen, Joann K. | Sauvé, Sébastien
Microcystins are cyanotoxins produced by many species of cyanobacteria. They are specific inhibitors of serine/threonine protein phosphatases and are phytotoxic to agricultural plants. This study used a formal meta-analysis to estimate the phytotoxicity and bioconcentration rates of agricultural plants exposed to microcystins, and the human health risk from consuming microcystin-contaminated plants. Among the 35 agricultural plants investigated, microcystins were most phytotoxic to durum wheat, corn, white mustard and garden cress. Leafy vegetables such as dill, parsley and cabbage could bioconcentrate ∼3 times more microcystins in their edible parts than other agricultural plants. Although the human health risk from ingesting microcystins could be greater for leafy vegetables than other agricultural plants, further work is needed to confirm bioconcentration of microcystins in realistic water-soil-plant environments. Still, we should avoid growing leafy vegetables, durum wheat and corn on agricultural land that is irrigated with microcystins-contaminated water and be attentive to the risk of microcystins contamination in the agricultural food supply.
اظهر المزيد [+] اقل [-]Effects of cadmium, inorganic mercury and methyl-mercury on the physiology and metabolomic profiles of shoots of the macrophyte Elodea nuttallii
2020
Cosio, Claudia | Renault, David
Macrophytes are known to bioaccumulate metals, but a thorough understanding of tolerance strategies and molecular impact of metals in aquatic plants is still lacking. The present study aimed to compare Hg and Cd effects in a representative macrophyte, Elodea nuttallii using physiological endpoints and metabolite profiles in shoots and cytosol.Exposure 24 h to methyl-Hg (30 ng L⁻¹), inorganic Hg (70 ng L⁻¹) and Cd (280 μg L⁻¹) did not affect photosynthesis, or antioxidant enzymes despite the significant accumulation of metals, confirming a sublethal stress level. In shoots, Cd resulted in a higher level of regulation of metabolites than MeHg, while MeHg resulted in the largest number of regulated metabolites and IHg treatment regulated no metabolites significantly. In cytosol, Cd regulated more metabolites than IHg and only arginine, histidine and mannose were reduced by MeHg exposure. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of data suggested that exposure to MeHg resulted in biochemical changes including aminoacyl-tRNA biosynthesis, glycine, serine and threonine metabolism, nitrogen metabolism, arginine and proline metabolism, cyanoamino acid metabolism, while the treatment of Cd stress caused significant variations in aminoacyl-tRNA biosynthesis and branched-chain amino acids pathways. Data supports an impact of MeHg on N homeostasis, while Cd resulted in an osmotic stress-like pattern and IHg had a low impact. Marked differences in the responses to MeHg and IHg exposure were evidenced, supporting different molecular toxicity pathways and main impact of MeHg on non-soluble compartment, while main impact of IHg was on soluble compartment. Metabolomics was used for the first time in this species and proved to be very useful to confirm and complement recent knowledge gained by transcriptomics and proteomics, highlighting the high interest of multi-omics approaches to identify early impact of environmental pollution.
اظهر المزيد [+] اقل [-]Physiological and genotype-specific factors associated with grain quality changes in rice exposed to high ozone
2016
Jing, Liquan | Dombinov, Vitalij | Shen, Shibo | Wu, Yanzhen | Yang, Lianxin | Wang, Yunxia | Frei, Michael
Rising tropospheric ozone concentrations in Asia affect the yield and quality of rice. This study investigated ozone-induced changes in rice grain quality in contrasting rice genotypes, and explored the associated physiological processes during the reproductive growth phase. The ozone sensitive variety Nipponbare and a breeding line (L81) containing two tolerance QTLs in Nipponbare background were exposed to 100 ppb ozone (8 h per day) or control conditions throughout their growth. Ozone affected grain chalkiness and protein concentration and composition. The percentage of chalky grains was significantly increased in Nipponbare but not in L81. Physiological measurements suggested that grain chalkiness was associated with a drop in foliar carbohydrate and nitrogen levels during grain filling, which was less pronounced in the tolerant L81. Grain total protein concentration was significantly increased in the ozone treatment, although the albumin fraction (water soluble protein) decreased. The increase in protein was more pronounced in L81, due to increases in the glutelin fraction in this genotype. Amino acids responded differently to the ozone treatment. Three essential amino acids (leucine, methionine and threonine) showed significant increases, while seven showed significant treatment by genotype interactions, mostly due to more positive responses in L81. The trend of increased grain protein was in contrast to foliar nitrogen levels, which were negatively affected by ozone. A negative correlation between grain protein and foliar nitrogen in ozone stress indicated that higher grain protein cannot be explained by a concentration effect in all tissues due to lower biomass production. Rather, ozone exposure affected the nitrogen distribution, as indicated by altered foliar activity of the enzymes involved in nitrogen metabolism, such as glutamine synthetase and glutamine-2-oxoglutarate aminotransferase. Our results demonstrate differential responses of grain quality to ozone due to the presence of tolerance QTL, and partly explain the underlying physiological processes.
اظهر المزيد [+] اقل [-]Bioinformatics analysis and quantitative weight of evidence assessment to map the potential mode of actions of bisphenol A
2021
Li, Xiaomeng | Ni, Mengmei | Yang, Zhirui | Chen, Xuxi | Zhang, Lishi | Chen, Jinyao
Bisphenol A (BPA) is a classical chemical contaminant in food, and the mode of action (MOA) of BPA remains unclear, constraining the progress of risk assessment. This study aims to assess the potential MOAs of BPA regarding reproductive/developmental toxicity, neurological toxicity, and proliferative effects on the mammary gland and the prostate potentially related to carcinogenesis by using the Comparative Toxicogenomics Database (CTD)-based bioinformatics analysis and the quantitative weight of evidence (QWOE) approach on the basis of the principles of Toxicity Testing in the 21st Century. The CTD-based bioinformatics analysis results showed that estrogen receptor 1, estrogen receptor 2, mitogen-activated protein kinase (MAPK) 1, MAPK3, BCL2 apoptosis regulator, caspase 3, BAX, androgen receptor, and AKT serine/threonine kinase 1 could be the common target genes, and the apoptotic process, cell proliferation, testosterone biosynthetic process, and estrogen biosynthetic process might be the shared phenotypes for different target organs. In addition, the KEGG pathways of the BPA-induced action might involve the estrogen signaling pathway and pathways in cancer. After the QWOE evaluation, two potential estrogen receptor-related MOAs of BPA-induced testis dysfunction and learning-memory deficit were proposed. However, the confidence and the human relevance of the two MOAs were moderate, prompting studies to improve the MOA-based risk assessment of BPA.
اظهر المزيد [+] اقل [-]Influence of fuel oil on Platymonas helgolandica: An acute toxicity evaluation to amino acids
2021
Li, Na | Liu, Yu | Liang, Zhengyu | Lou, Yadi | Liu, Yuxin | Zhao, Xinda | Wang, Guoguang
It is highly likely that the toxicity of water accommodated fractions (WAF) will influence marine microalgae, and consequently lead to potential risk for the marine ecological environment. However, it was often neglected whether WAF can influence the transformation of relative compounds in organisms. The metabolism of amino acids (AAs) can be used to track physiological changes in microalgae because amino acids are the basis of proteins and enzymes. In this study, using marine Chlorophyta Platymonas helgolandica as the test organism, the effects of different concentrations of WAF on AA compositions and stable carbon isotope ratios (δ¹³C) of individual AAs of Platymonas helgolandica were investigated. The results showed that the WAF of #180 fuel oil had an obvious suppressing effect on the growth and chlorophyll a content of microalgae. The growth inhibitory rate at 96 h was 80.66% at a WAF concentration of 0.50 mg L⁻¹ compared with the control. Furthermore, seven among the 16 AAs, including alanine, cysteine, proline, aspartic acid, lysine, histidine and tyrosine, had relatively high abundance. Under the glycolysis pathway, the cysteine abundance was higher than control, meaning that the biosynthesized pathway of alanine through cysteine as a precursor could be damaged. Phosphoenolpyruvate (PEP) was an important synthesis precursor of alanine (leucine) and aromatic AA family (Phenylalanine and tyrosine), and played an important role in δ¹³CAAₛ fractionation under the WAF stress. Under the TCA pathway, to protect cell metabolism activities under WAF stress, the δ¹³C value of threonine and proline abundance in microalgae with the increase in WAF stress. Therefore, δ¹³CAAₛ fractionation can be used as a novel method for toxicity evaluation of WAF on future.
اظهر المزيد [+] اقل [-]Rice grains alleviate cadmium toxicity by expending glutamate and increasing manganese in the cadmium contaminated farmland
2020
Yuan, Kai | Wang, Changrong | Zhang, Changbo | Huang, Yongchun | Wang, Peipei | Liu, Zhongqi
The accumulation of cadmium (Cd) in rice grains is closely associated with the content of mineral nutrients and amino acid metabolism, but the causal link among them is unclear. Profiles of amino acids (AAs) and quantities of essential nutrients in grains from early and late rice cultivars grown at four sites with different Cd levels were analyzed in the present study. Hazard quotients (HQs) for consumers by intake of rice from late cultivars were much higher than that from early cultivars at sites with soil Cd content of 0.25, 0.61 and 0.84 mg kg⁻¹. Cadmium accumulation in grains resulted in a sharp reduction of total essential AAs and non-essential AAs in both early and late rice cultivars. High-Cd-accumulating (HCA) cultivars had significantly higher level of glutamate (Glu) than low-Cd-accumulating (LCA) cultivars when rice Cd content was less than 0.20 mg kg⁻¹. However, Glu level in grains dramatically declined with the accumulation of Cd, which subsequently leaded to the reduction of other AAs. Cadmium content was well predicted by five amino acids (i.e., Glu, Alanine, Phenylalanine, Glycine and Threonine) or four essential elements (Ca, Fe, Mn and Zn) when rice Cd was less than 0.80 mg kg⁻¹. Amino acids played more important roles than nutrients in Cd accumulation. When Cd content was in the range of 0.40–1.16 mg kg⁻¹, the Mn content in rice increased significantly with the increase of Cd content, while the Glu content dropped down synchronously. Remarkably, the ratio between Mn and Glu displayed the highest direct path coefficient on Cd accumulation than any single cation or amino acid. These results indicate that high capacity in synthesizing Glu and concentrating Mn is the determinant factor for Cd accumulation in rice grains, and abundant Glu in aleurone layer may alleviate Cd toxicity by forming Glu-Cd complex.
اظهر المزيد [+] اقل [-]Mechanistic Insights into TiO2 and ZnO Nanoparticle-Induced Metabolic Changes in Escherichia coli Under Solar Simulated Light Irradiation
2020
Pathakoti, Kavitha | Manubolu, Manjunath | Hwang, Huey-min
This study investigated the metabolic response of E. coli after exposure to TiO₂ and ZnO NPs under solar simulated irradiation. A total of 14 altered metabolites involved in two metabolic pathways were recognized using multivariate analysis. Polyamine, putrescine was elevated in ZnO-treated group, as an adaptation to oxidative stress in cells, whereas it was significantly reduced in TiO₂-treated group. Glycine levels also were elevated in both the treatment groups, showing cellular protection in cells after exposure. In addition, glycine, serine, and threonine metabolism and arginine and proline metabolism were altered in ZnO and TiO₂-treated groups respectively.
اظهر المزيد [+] اقل [-]Study on the microbial community in earthworm and soil under cadmium stress based on contour line analysis
2019
Ning, Yucui | Zhou, Haoran | Zhou, Dongxing
Cadmium (Cd) contamination in soil has become the focus of widespread concern in society today. In this paper, with Eisenia fetida as research subjects, an indoor simulation experiment was conducted. A BIOLOG microplate technique was used to determine the carbon source (single-carbon) utilization of the microbial communities in the contaminated soil and earthworms under Cd stress. Contour line analysis was used for the first time to study the difference of carbon source metabolism in microbial communities. And the effects of Cd stress on the functional diversity of the microbial communities and the detoxification mechanism in earthworms were researched. With two test groups, a short-term test and the long-term test were performed. The former test lasted for 10 days, with the removal of an earthworm every day for analysis; the latter test lasted for 30 days, with the removal of an earthworm every 10 days. The Cd²⁺ concentration was set at 0, 50, 100, 125, 250, or 500 mg kg⁻¹ dry weight, and 10 earthworms were inoculated in each concentration treatment. The earthworm homogenate and soil extracts were used to determine the carbon source utilization of the microbial communities. The results show that Cd stress changed the functional diversity of the microbial communities in the soil and earthworms. With the extension of stress time and the increase of stress concentration, earthworms will adjust their own physiological functions (including the microbial community structure and stress mechanism in the body) and regulate the microbial community structure in the external environment to obtain the necessary substances for growth. In addition, 2-hydroxybenzoic acid, γ-hydroxybutyric acid, glutamyl-L-glutamic acid, α-butyric acid, threonine, and α-cyclodextrin were important carbon sources for the earthworms to maintain their normal physiological metabolism under Cd stress. This study confirms that changes in microbial communities can be used to reveal the detoxification mechanisms of earthworm under heavy metal stress.
اظهر المزيد [+] اقل [-]Evaluation of 2,4-dichlorophenol exposure of Japanese medaka, Oryzias latipes, using a metabolomics approach
2017
Kokushi, Emiko | Shintoyo, Aoi | Koyama, Jiro | Uno, Seiichi
In this study, the metabolic effects of waterborne exposure of medaka (Oryzias latipes) to nominal concentrations of 20 (L group) and 2000 μg/L (H group) 2,4-dichlorophenol (DCP) were examined using a gas chromatography/mass spectroscopy (GC/MS) metabolomics approach. A principal component analysis (PCA) separated the L, H, and control groups along PC1 to explain the toxic effects of DCP at 24 h of exposure. Furthermore, the L and H groups were separated along PC1 at 96 h on the PCA score plots. These results suggest that the effects of DCP depended on exposure concentration and time. Changes in tricarboxylic cycle metabolites suggested that fish exposed to 2,4-DCP require more energy to metabolize and eliminate DCP, particularly at 96 h of exposure. A time-dependent response in the fish exposed to DCP was observed in the GC/MS data, suggesting that the higher DCP concentration had greater effects at 24 h than those observed in response to the lower concentration. In addition, several essential amino acids (arginine, histidine, lysine, isoleucine, leucine, methionine, phenylalanine, threonine, tryptophan, and valine) decreased after DCP exposure in the H group, and starvation condition and high concentration exposure of DCP could consume excess energy from amino acids.
اظهر المزيد [+] اقل [-]A combined NMR- and HPLC-MS/MS-based metabolomics to evaluate the metabolic perturbations and subacute toxic effects of endosulfan on mice
2017
Zhang, Ping | Zhu, Wentao | Wang, Dezhen | Yan, Jin | Wang, Yao | Zhou, Zhiqiang | He, Lin
Endosulfan is the newly persistent organic pollutants (POPs) added to the Stockholm Convention as its widespread use, persistence, bioaccumulation, long-range transport, endocrine disruption, and toxicity related to various adverse effects. In the present study, male mice were administrated endosulfan at 0, 0.5, and 3.5 mg/kg by gavage for 2 weeks. ¹H-NMR-based urinary metabolomics, HPLC-MS/MS-based targeted serum metabolomics, clinical analysis, and histopathology techniques were employed to evaluate the metabolic perturbations of subacute endosulfan exposure. Endosulfan exposures resulted in weight loss, liver inflammation and necrosis, and alterations in serum amino acids and urine metabolomics. Based on altered metabolites, several significantly perturbed pathways were identified including glycine, serine, and threonine metabolism; TCA cycle; pyruvate metabolism; glycolysis or gluconeogenesis; glycerophospholipid metabolism; and glyoxylate and dicarboxylate metabolism. Such pathways were highly related to amino acid metabolism, energy metabolism, and lipid metabolism. In addition, metabolomic results also demonstrated that gut microbiota was remarkably altered after endosulfan exposure. These observations may provide novel insight into revealing the potential toxic mechanism and evaluating the health risk of endosulfan exposure at metabolomic level.
اظهر المزيد [+] اقل [-]